

Internal dynamics of the Large Magellanic Cloud from Gaia DR2

Eugene Vasiliev

Institute of Astronomy, Cambridge

Abstract

We use the proper motions (PM) of half a million red giant stars in the Large Magellanic Cloud (LMC) measured by Gaia to construct a 2d kinematic map of mean PM and its dispersion across the galaxy, out to 7 Kpc from its centre. We then explore a range of dynamical models and measure the rotation curve, mean azimuthal velocity, velocity dispersion profiles, and the orientation of the galaxy. We find that the circular velocity reaches ~ 100 km/s at 5 Kpc, and that the velocity dispersion ranges from $\sim 40-50$ km/s in the galaxy centre to ~ 20 km/s at 7 Kpc.

1. Input data and sample selection

3. Kinematic maps

Figure 1: Obtaining a clean sample

- ▶ Select all sources within 8° from the LMC centre (left panels) 10^7 sources.
- \blacktriangleright Retain only stars with parallax consistent with zero at 3σ level (eliminate obvious) foreground contaminants).
- Reject stars with astrometric_excess_noise > 0.2 possibly unresolved binaries or other sources with inaccurate astrometry.
- Remove stars with unreliable photometry: phot_bp_rp_excess_factor > $1.3 + 0.06 (G_{BP} - G_{RP})^2$ – preferentially faint sources in crowded regions, which are affected by nearby brighter stars (middle panels) – 3×10^6 sources.
- Select the region in the colour-magnitude diagram corresponding to red giants above the red clump (right panels – blue) – 5×10^5 sources.

Even though we do not explicitly filter on proper motions, the final sample is very clean (μ_X, μ_Y) clustered around the mean value for LMC stars), while the foreground stars with PM inconsistent with LMC by more than 2 mas/yr (right paneld – red) have very little overlap with LMC stars in CMD; their spatial distribution is nearly uniform across the area of interest.

2. Error deconvolution

Figure 3: Kinematic maps of LMC from Gaia data

Top row: mean PM and its dispersion (measured in km/s; 1 mas/yr = 237 km/s) assuming the distance D = 50 Kpc). Bottom left: individual radial velocity measurements. Bottom centre: density of sources per square degree, and streamlines of PM illustrating the effect of perspective shrinking due to the LMC line-of-sight motion away from the observer; the blue rectangle shows the orbital plane orientation, with the top-left corner being nearer. Bottom right: correlation coefficient for PM dispersions. The sources are binned into \sim 500 Voronoi bins [Cappellari&Copin 2001].

4. Models

Figure 4: Kinematic maps of the best-fit JAM models (top row) and the residuals (bottom row)

- ► Use the Jeans anisotropic model (JAM) approach [Cappellari 2008, Watkins et al. 2013], in a new implementation allowing for arbitrary density/potential profiles and perspective corrections; exponential stellar disc + dark halo (7 free parameters).
- Complement with another approach thin-disc models (no dynamical consistency or inference about the potential, just non-parametric velocity profiles).
- Extra 6 free parameters: distance, disc plane orientation, centre-of-mass velocity.
- ▶ Use the emcee code [Foreman-Mackey et al. 2013] to explore the parameter space.

Figure 2: Obtaining the intrinsic distribution of PM

Use the Extreme Deconvolution approach [Bovy et al. 2011] to infer the intrinsic distribution of PM represented as a sum of two 2d Gaussians (the main sample and a small admixture of contaminants), which matches the observed distribution after being convolved with measurement errors.

References

Bovy J., Hogg D., Roweis S., 2011, Ann. Appl. Stat., 5, 1657 Cappellari M., 2008, MNRAS, 390, 71 Cappellari M., Copin Y., 2003, MNRAS, 342, 345 Foreman-Mackey D., Hogg D., Lang D., Goodman J., 2013, PASP, 125, 306 Helmi A., van Leeuwen F., McMillan P., et al. (*Gaia* Collaboration), arXiv:1804.09381 Watkins L., van de Ven G., de Brok M., van den Bosch R., 2013, MNRAS, 436, 2598

This study: arXiv:1805.08157, submitted to MNRAS Letters.

5. Results: internal dynamics

Red and blue: radial and vertical velocity dispersion profiles in JAM; purple: isotropic velocity dispersion in thin-disc models; green and cyan: mean azimuthal velocity in JAM and thin-disc models; gray: rotation curve (circular velocity in equatorial plane) in JAM.