Deprojection and dynamical modelling of barred galaxies

Eugene Vasiliev¹, Shashank Dattathri², Monica Valluri²

¹ Institute of Astronomy, Cambridge; ² University of Michigan

1. Context and problem

- 1/3 to 2/3 of all disc galaxies have bars.
- we see galaxies only in projection and need to reconstruct the 3d shape in order to build dynamical models.
- conventional photometric fitting methods such as Multi-Gaussian Expansion (MGE) are designed for ellipsoidally stratified density profiles, but bars often have boxy or X-shaped structure.
- one can use a boxy or X-shaped model (e.g., a generalized ellipse (x/a)ⁿ + (y/b)ⁿ = 1) to fit the projected image, but determining the corresponding 3d shape from it is next to impossible.

2. Our approach

- use the IMFIT program [Erwin 2015], which can deal with arbitrary 3d density components and computes their projected density at any given orientation.
- define a custom family of realistic 3d density profiles of bars with adjustable separation, amplitude and width of peanut-shaped features

3. Results: edge-on fits and deprojection

Apply the method to mock images created from *N*-body snapshots of barred galaxies.

As a first step, explore only the edge-on orientation, with the long axis of the bar rotated at some angle α w.r.t. the image plane.

Figure 1: Left: original N-body snapshot; right: 3d density reconstructed from an edge-on projection shown in the second row (long axis of the bar lying in the image plane, $\alpha = 0$). The reconstructed 3d density profile is quite close to the true one.

However, the angle α is not well constrained – a longer bar rotated by $\alpha>0$ is almost as good as a short bar with $\alpha=0$. To tell them apart, we need to feed kinematic information (line-of-sight velocity maps) into a dynamical model.

4. Results: dynamical modelling and pattern speed

In addition to photometry, from which the 3d density is reconstructed, use kinematic information (2d maps of line-of-sight velocity distribution represented by six Gauss-Hermite moments, as could be observed by a typical IFU spectrograph) as observational constraints in the dynamical models constructed with the Schwarzschild orbit-superposition code FORSTAND [Vasilev&Valluri 2020].

Figure 2: Left: kinematic maps created from the N-body snapshot; right: contours of χ^2 as a function of model parameters (pattern speed and stellar mass-to-light ratio); both are well recovered (the minimum $\sigma\chi^2$ is close to the true values marked by green dashed lines).

It appears that dynamical self-consistency (the ability of orbits in the given potential to reproduce the corresponding 3d density profile) already strongly constrains the pattern speed even in the edge-on orientation, in which the simpler Tremaine-Weinberg method is inapplicable.

References

Erwin P., 2015, ApJ, 799, 226 Vasiliev E., Valluri M., 2020, ApJ, 889, 39 Dattathri S., Valluri M., Vasiliev E., in prep.