Defying the disequilibrium: the usefulness of steady-state self-consistent models for the Galaxy

The discovery of a new retrograde population in accretion event, says an abooked the entire astrononical community.

Eugene Vasiliev

Institute of Astronomy, Cambridge

KITP, Santa Barbara, April 2019

Why steady state?

Distribution function of stars $f(\mathbf{x}, \mathbf{v}, t)$ satisfies [sometimes] the collisionless Boltzmann equation:

$$\frac{\partial f(\mathbf{x}, \mathbf{v}, t)}{\partial t} + \mathbf{v} \frac{\partial f(\mathbf{x}, \mathbf{v}, t)}{\partial \mathbf{x}} - \frac{\partial \Phi(\mathbf{x}, t)}{\partial \mathbf{x}} \frac{\partial f(\mathbf{x}, \mathbf{v}, t)}{\partial \mathbf{v}} = 0.$$

Why steady state?

Distribution function of stars $f(\mathbf{x}, \mathbf{v}, t)$ satisfies [sometimes] the collisionless Boltzmann equation:

$$\mathbf{v} \frac{\partial f(\mathbf{x}, \mathbf{v})}{\partial \mathbf{x}} - \frac{\partial \Phi(\mathbf{x})}{\partial \mathbf{x}} \frac{\partial f(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} = 0.$$
 Steady-state assumption \Longrightarrow Jeans theorem:
$$f(\mathbf{x}, \mathbf{v}) = f(\mathcal{I}(\mathbf{x}, \mathbf{v}; \Phi))$$
 integrals of motion (\le 3D?), e.g., $\mathcal{I} = \{E, L, \dots\}$

Initial conditions for perturbation analysis

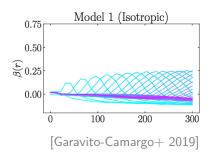
Better start with an equilibrium configuration!

Initial conditions for *N*-body simulations

Many of the commonly used methods for constructing initial conditions produce out-of-equilibrium systems and require an initial transient period to settle into a [different!] equilibrium configuration.

to ensure $Q_{\star} \ge 1.5$ everywhere. Since the initial conditions are for a system slightly out of equilibrium, each simulation was evolved for roughly 4 Gyr before being disturbed. We

[Bland-Hawthorn+ 2018]



This is not an unavoidable nuisance – shop for better methods!

- no model is a perfect rendition of reality;
- the value of models is in their interpretability;
- ▶ makes sense to start with something relatively simple (equilibrium).

Desirable features:

- distribution functions for individual chemically (and/or geometrically) distinct populations;
- dynamically self-consistent gravitational potential;
- flexibility of tuning and easiness of construction.

No such models exist [yet?]

Fundamental equations

distribution function

integrals of motion
/ gravitational potential

1. Collisionless Boltzmann equation:

$$\mathbf{v} \frac{\partial f}{\partial \mathbf{x}} - \frac{\partial \Phi}{\partial \mathbf{x}} \frac{\partial f}{\partial \mathbf{y}} = 0 \implies f = f(\mathcal{I}(\mathbf{x}, \mathbf{v}; \Phi)).$$

(Assumption: a galaxy is a collisionless system in a steady state)

2. Poisson equation:

$$\nabla^2 \Phi(\mathbf{x}) = 4\pi G \rho(\mathbf{x}).$$
 total density

(Assumption: Newtonian gravity)

3. The link:

$$\rho(\mathbf{x}) = \iiint d^3 v \, f(\mathbf{x}, \mathbf{v}).$$

(Assumption: self-consistency)

Iterative approach

- **1.** Assume a particular distribution function $f(\mathcal{I})$;
- 2. Adopt an initial guess for $\Phi(\mathbf{x})$;
- 3. Establish the integrals of motion \(\mathcal{I}(\mathbf{x}, \mathbf{v}) \) in this potential;
 4. Compute the density \(\rho(\mathbf{x}) = \iiiint \iiint d^3 \nu \ f(\mathcal{I}(\mathbf{x}, \mathbf{v}));
 5. Solve the Poisson equation to find the new potential \(\Phi(\mathbf{x}); \)
 6. Repeat until convergence.

```
Origin: Prendergast & Tomer 1970;
used in Kuijken & Dubinski 1995, Widrow+ 2008, Taranu+ 2017 (GalactICs),
Piffl+ 2014, Cole & Binney 2016, Sanders & Evans 2016 (action-based formalism).
```

How to compute the potential

1. Direct integration:

$$\Phi(\mathbf{x}) = -\iiint d^3x' \, \rho(\mathbf{x}') \times \frac{G}{|\mathbf{x} - \mathbf{x}'|}.$$

2. Azimuthal harmonic expansion:

$$\Phi(R,z,\phi) = \sum_{m=-\infty}^{\infty} \Phi_m(R,z) e^{im\phi}.$$

interpolated functions

3. Spherical harmonic expansion:

$$\Phi(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \Phi_{lm}(r) Y_{l}^{m}(\theta,\phi).$$

4. Basis-set expansion:

$$\Phi(r,\theta,\phi) = \sum_{n=0}^{\infty} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \Phi_{nlm} A_{nl}(r) Y_{l}^{m}(\theta,\phi).$$

(example: self-consistent field method of Hernquist&Ostriker 1992)

How to compute the potential of a spheroidal system

3. Spherical-harmonic expansion:

$$\Phi(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{l=0}^{l} \Phi_{lm}(r) Y_{l}^{m}(\theta,\phi),$$

$$\Phi_{lm}(r) = -\frac{4\pi G}{2l+1} \left[r^{-1-l} \int_0^r dr' \, \rho_{lm}(r') \, r'^{l+2} + r^l \int_r^{\infty} dr' \, \rho_{lm}(r') \, r'^{1-l} \right],$$

$$\rho_{lm}(r) = \int_0^{\pi} d\theta \int_0^{2\pi} d\phi \; \rho(r,\theta,\phi) \; Y_l^{m*}(\theta,\phi).$$

How to compute the potential of a flattened system

2. Azimuthal-harmonic (Fourier) expansion:

$$\Phi(R,z,\phi) = \sum_{m=-\infty}^{\infty} \Phi_m(R,z) e^{im\phi},$$

$$ho_m(R,z) = rac{1}{2\pi} \int_0^{2\pi} d\phi \;
ho(R,z,\phi) \mathrm{e}^{-im\phi},$$

$$\Phi_m(R,z) = -\iint dR' dz' \, \rho_m(R',z') \times \Xi_m(R,z,R',z'),$$

analytic expr. for Green's function:
$$\Xi_m(R,z,R',z') \equiv \int_0^\infty dk \ 2\pi G \ J_m(kR) \ J_m(kR') \ \exp(-k|z-z'|) =$$

$$= \frac{2\sqrt{\pi} \Gamma\left(m + \frac{1}{2}\right) {}_{2}F_{1}\left(\frac{3}{4} + \frac{m}{2}, \frac{1}{4} + \frac{m}{2}; m + 1; \xi^{-2}\right)}{\sqrt{RR'} \left(2\xi\right)^{m+1/2} \Gamma(m+1)}$$

where
$$\xi\equiv rac{R^2+R'^2+(z-z')^2}{2RR'}$$
.

Gravitational potential extracted from N-body simulations

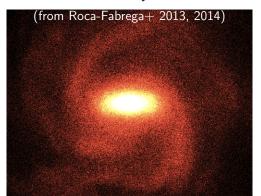
The spherical-harmonic and azimuthal-harmonic potential approximations can also be constructed from N-body models.

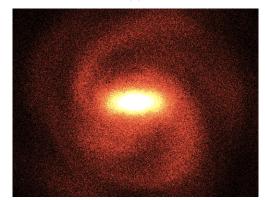
Advantages:

fast evaluation, smooth forces, suitable for orbit integration and analysis.

Real *N*-body model

Potential approximation



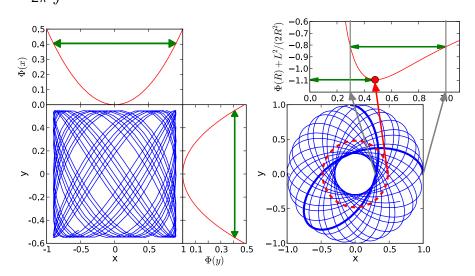


Work in progress: smooth potentials of FIRE simulations

Actions as integrals of motion

One may use any set of integrals of motion, but actions are special:

$$J=rac{1}{2\pi}\oint {f p}\ d{f x}$$
, where ${f p}$ are canonically conjugate momenta for ${f x}$



Advantages of action/angle variables

- ▶ Clear physical meaning (describe the extent of oscillations in each dimension).
- ▶ Most natural description of motion (angles change linearly with time).
- ▶ Possible range for each action variable is $[0..\infty)$ or $(-\infty..\infty)$, independently of the other ones (unlike E and L, say).
- ► Canonical coordinates \Rightarrow total mass is computed trivially $M = \int f(\mathbf{x}, \mathbf{v}) \ d^3x \ d^3v = \int f(\mathbf{J}) \ d^3J \ d^3\theta = \int f(\mathbf{J}) \ d^3J \ (2\pi)^3$, does not depend on Φ , does not change between iterations.
- ► Actions are adiabatic invariants (are conserved under slow variation of potential) ⇒ easy to construct multicomponent models.
- Serve as a good starting point in perturbation theory.
- Efficient methods for conversion between {x, v} and {J, θ} exist
 (e.g., Stäckel fudge, Binney 2012, or Torus machine, Binney & McMillan 2016).

"Classical" methods

Spherical systems: two of the actions can be taken to be the azimuthal action $J_{\phi} \equiv L_z$ and the latitudinal action $J_{\vartheta} \equiv L - |L_z|$; the third one (the radial action) is given by a 1d quadrature:

$$J_r = \frac{1}{\pi} \int_{r_{max}}^{r_{max}} dr \sqrt{2[E - \Phi(r)] - L^2/r^2},$$

where r_{\min} , r_{\max} are the peri- and apocentre radii.

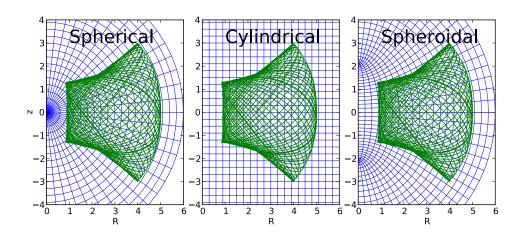
Angles are given by 1d quadratures. For special cases (the isochrone potential, and its limiting cases – Kepler and harmonic potentials), these integrals are computed analytically.

Note: a related concept in celestial mechanics are the Delaunay variables.

▶ Flattened axisymmetric systems – the **epicyclic approximation**: motion close to the disk plane is nearly separable into the in-plane motion (J_{ϕ} and J_{r} as in the spherical case) and the vertical oscillation with a fixed energy E_{z} in a nearly harmonic potential (J_{z}).

State of the art: Stäckel fudge

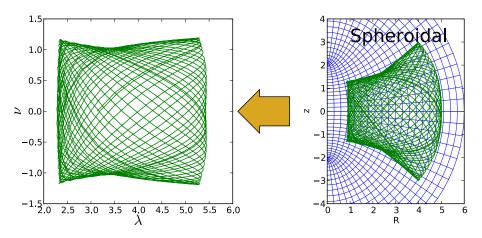
Fact: orbits in realistic axisymmetric galactic potentials are much better aligned with prolate spheroidal coordinates.



State of the art: Stäckel fudge

Fact: orbits in realistic axisymmetric galactic potentials are much better aligned with prolate spheroidal coordinates.

One may explore the assumption that the motion is separable in these coordinates (λ, ν) .



Stäckel fudge [Binney 2012]

The most general form of potential that satisfies the separability condition is the Stäckel potential¹: $\Phi(\lambda, \nu) = -\frac{f_1(\lambda) - f_2(\nu)}{\lambda - \nu}$.

The motion in λ and ν directions, with canonical momenta p_{λ}, p_{ν} , is governed by two separate equations:

$$2(\lambda - \Delta^2) \lambda p_{\lambda}^2 = \left[E - \frac{L_z^2}{2(\lambda - \Delta^2)} \right] \lambda - [I_3 + (\lambda - \nu)\Phi(\lambda, \nu)],$$

$$2(\nu - \Delta^2) \nu p_{\nu}^2 = \left[E - \frac{L_z^2}{2(\nu - \Delta^2)} \right] \nu - [I_3 + (\nu - \lambda)\Phi(\lambda, \nu)].$$

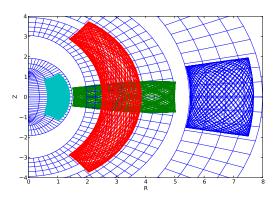
Under the approximation that the separation constant I_3 is indeed conserved along the orbit, actions are computed as

$$J_{\lambda} = rac{1}{\pi} \int_{\lambda}^{\lambda_{\mathsf{max}}} p_{\lambda} \, d\lambda, \quad J_{
u} = rac{1}{\pi} \int_{\lambda}^{
u_{\mathsf{max}}} p_{
u} \, d
u.$$

¹Note that the potential of the Perfect Ellipsoid [de Zeeuw 1985] is of the Stäckel form, but it is only one example of a much wider class of potentials.

Stäckel fudge in practice

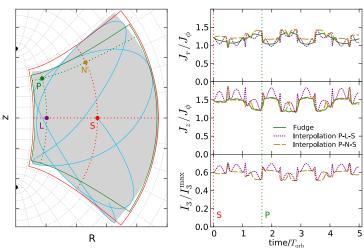
A rather flexible approximation: for each orbit, we have the freedom of using two functions $f_1(\lambda)$, $f_2(\nu)$ (directly evaluated from the actual potential $\Phi(R,z)$) to describe the motion in two independent directions. These functions are different for each orbit (implicitly depend on E, L_z, I_3). Moreover, we may choose the focal distance Δ of the auxiliary prolate spheroidal coordinate system for each orbit independently.



Accuracy of the Stäckel fudge

Accuracy of action conservation using the Stäckel fudge: $\lesssim 1\%$ for most disk orbits, $\lesssim 10\%$ even for high-eccentricity orbits [except near resonances!].

Interpolation of J_r , J_z on a 3d grid of E, L_z , I_3 : 10x speed-up at the expense of a moderate [not always acceptable!] decrease in accuracy.



Other methods for action computation

The accuracy of the Stäckel approximation is "uncontrollable" (cannot be systematically improved), and it is mainly used in axisymmetric potentials.

However, actions offer the only **systematic** method for computing the integrals of motion in a **non-perturbative** way for an arbitrary potential.

Canonical transformation between true $\{\mathbf{J}, \boldsymbol{\theta}\}$ and "toy" $\{\mathbf{J}^T, \boldsymbol{\theta}^T\}$ in some simple potential (e.g., isochrone), for which the mapping between position/velocity and action/angle coordinates is known (Torus construction – McGill&Binney 1990; McMillan&Binney 2008).

This transformation is described by a generating function $S(\mathbf{J}, \boldsymbol{\theta}^T)$, which can be expanded into Fourier series in $\boldsymbol{\theta}^T$; the accuracy of this approximation depends on the number of terms in the expansion.

A modification of this approach allows one to construct tori for resonantly-trapped orbits [Kaasalainen 1994; Binney 2016, 2018].

Distribution functions in action space

► Spheroidal components (halo, bulge): double-power-law DF [Binney 2014, Posti+ 2015, Williams & Evans 2015]

$$f(\mathbf{J}) = \frac{M}{(2\pi J_0)^3} \left(\frac{h(\mathbf{J})}{J_0}\right)^{-\Gamma} \left[1 + \left(\frac{g(\mathbf{J})}{J_0}\right)^{\eta}\right]^{\frac{\Gamma - B}{\eta}} \exp\left[-\left(\frac{g(\mathbf{J})}{J_{\text{cut}}}\right)^{\zeta}\right] \left(1 + \varkappa \tanh \frac{J_{\phi}}{J_{\phi,0}}\right),$$

$$g(\mathbf{J}) \equiv g_r J_r + g_z J_z + g_{\phi} |J_{\phi}|, \quad h(\mathbf{J}) \equiv h_r J_r + h_z J_z + h_{\phi} |J_{\phi}|$$

▶ Disk components: quasi-isothermal DF [Binney & McMillan 2011]

$$\begin{split} f(\mathbf{J}) &= \frac{\tilde{\Sigma} \, \Omega}{2\pi^2 \, \kappa^2} \times \frac{\kappa}{\tilde{\sigma}_r^2} \exp\left(-\frac{\kappa \, J_r}{\tilde{\sigma}_r^2}\right) \times \frac{\nu}{\tilde{\sigma}_z^2} \exp\left(-\frac{\nu \, J_z}{\tilde{\sigma}_z^2}\right) \times \left\{ \begin{array}{l} 1 & \text{if } J_\phi \geq 0, \\ \exp\left(\frac{2\Omega \, J_\phi}{\tilde{\sigma}_r^2}\right) & \text{if } J_\phi < 0, \end{array} \right. \\ \tilde{\Sigma}(R_c) &\equiv \Sigma_0 \exp\left(-\frac{R_c}{R_{\rm disk}}\right), \quad \tilde{\sigma}_r^2(R_c) \equiv \sigma_{r,0}^2 \exp\left(-\frac{2R_c}{R_{\sigma,r}}\right), \quad \tilde{\sigma}_z^2(R_c) \equiv 2 \, h_{\rm disk}^2 \, \nu^2(R_c). \end{split}$$

► Alternative disk DF (exponential):

$$f(\mathbf{J}) = \tfrac{M}{(2\pi)^3} \, \tfrac{J}{J_{\phi,0}^2} \, \exp\left(-\tfrac{J}{J_{\phi,0}}\right) \times \tfrac{J}{J_{r,0}^2} \exp\left(-\tfrac{JJ_r}{J_{r,0}^2}\right) \times \tfrac{J}{J_{z,0}^2} \exp\left(-\tfrac{JJ_z}{J_{z,0}^2}\right) \times \left\{ \begin{array}{l} 1 \quad \text{if } J_\phi \geq 0 \\ \exp\left(\tfrac{JJ_\phi}{J_{r,0}^2}\right) \end{array} \right.$$

Construction of self-consistent models specified by DFs

Modelling procedure:

- Assume the parameters for the stellar and dark matter DFs
- Iteratively find the self-consistent potential/density corresponding to this DF:
 - Assume an initial guess for the potential
 Initialize the action mapper for this potential
 Recompute the density by integrating the DFs over velocity
 Recompute the potential
- Compute the likelihood of the model given the data (compare the velocity distributions, microlensing depth, rotation curve)
- ▶ Adjust the parameters of the DFs

The result: ~ 15 parameters of DFs (mass, scale lengths and heights, velocity dispersions, etc.) and the final self-consistent potential as a by-product.

Advantages of models based on distribution function

- Clear physical meaning (localized structures in the space of integrals of motion);
- ► Easy to compare different models (how to compare two *N*-body or *N*-orbit models?);
- Easy to compare models to discrete observational data;
- ► Easy to sample particles from the distribution function (convert to an *N*-body model);
- Stability analysis
 (perturbation theory most naturally formulated in terms of actions);

Caveats:

- ▶ Implicitly rely on the integrability of the potential, ignore the presence of resonant orbit families (but see Binney 2016, 2018);
- ► So far implemented only for axisymmetric models (not a fundamental limitation).

Perturbation theory in action space

$$f(\mathbf{J}, \boldsymbol{\theta}, t) = f_0(\mathbf{J}) + \epsilon f_1(\mathbf{J}, \boldsymbol{\theta}, t),$$

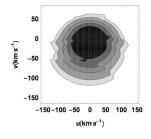
$$H(\mathbf{J}, \boldsymbol{\theta}, t) = H_0(\mathbf{J}) + \epsilon H_1(\mathbf{J}, \boldsymbol{\theta}, t) = H(\mathbf{x}, \mathbf{v}, t) \equiv \Phi_0(\mathbf{x}) + \epsilon \Phi_1(\mathbf{x}, t) + \frac{1}{2} \mathbf{v}^2.$$

Linearized Vlasov / collisionless Boltzmann equation:

$$0 = \frac{\partial f}{\partial t} + [H, f] \approx \frac{\partial f_1}{\partial t} + \frac{\partial f_1}{\partial \theta} \frac{\partial H_0}{\partial \mathbf{J}} - \frac{\partial f_0}{\partial \mathbf{J}} \frac{\partial \Phi_1}{\partial \theta}.$$

 $\Phi_1(\mathbf{x}, t)$ is the external perturbation augmented with internal self-gravity (diverges at resonances!).

For the given f_0 and Φ_1 , one may compute the perturbed DF $f_1(\mathbf{J}, \boldsymbol{\theta}, t)$ [e.g., Monari+ 2016, 2017, 2018] — so far has only been done under epicyclic approximation, but a Stäckel generalization is possible.



Impact of disequilibrium on potential estimation

- ▶ Campbell+ 2017, Errani+ 2018: $\lesssim 10-20\%$ bias/scatter for a "sweet-spot" mass estimator (single number)
- ▶ Li+ 2016: 30 40% scatter in M/L estimated by JAM models applied to a sample of Illustris galaxies
- ▶ Wang+ 2017: 20 50% bias/scatter in halo mass/concentration estimated by spherical Jeans equation for APOSTLE simulations
- ▶ El-Badry+ 2017 "When the Jeans don't fit": \sim 20% bias in potential estimate from FIRE simulations
- ▶ Haines+ 2019: up to 50% overestimate of surface density estimated by 1d Jeans analysis applied to *N*-body simulations of Laporte et al.

Bottom line: steady-state assumption may substantially bias the results; need to calibrate your favourite method on realistic simulated data.

- ► Extensive collection of gravitational potential models (analytic profiles, azimuthal- and spherical-harmonic expansions) constructed from smooth density profiles or *N*-body snapshots;
- Conversion to/from action/angle variables;
- ► Self-consistent multicomponent models with action-based DFs;
- Schwarzschild orbit-superposition models;
- ► Generation of initial conditions for *N*-body simulations;
- ► Various math tools: 1d,2d,3d spline interpolation, penalized spline fitting and density estimation, multidimensional sampling;
- ▶ Efficient and carefully designed C++ implementation, examples, Python and Fortran interfaces, plugins for Galpy, NEMO, AMUSE.

arXiv:1802.08239, 1802.08255 https://github.com/GalacticDynamics-Oxford/Agama

