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Why steady state?

Distribution function of stars f (x, v, t)
satisfies [sometimes] the collisionless Boltzmann equation:

∂f (x, v, t)
∂t

+ v
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− ∂Φ(x, t)

∂x
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= 0.

Steady-state assumption =⇒ Jeans theorem:

f (x, v) = f
�
I(x, v; Φ)

�

integrals of motion (≤ 3D?), e.g., I = {E , L, . . . }
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Initial conditions for perturbation analysis

Better start with an equilibrium configuration!



Initial conditions for N-body simulations

Many of the commonly used methods for constructing initial conditions
produce out-of-equilibrium systems and require an initial transient period
to settle into a [different!] equilibrium configuration.

This is not an unavoidable nuisance – shop for better methods!

[Bland-Hawthorn+ 2018] [Garavito-Camargo+ 2019]



Holy Grail : the baseline model for the Milky Way

� no model is a perfect rendition of reality;

� the value of models is in their interpretability;

� makes sense to start with something relatively simple (equilibrium).

Desirable features:

� distribution functions for individual chemically (and/or geometrically)

distinct populations;

� dynamically self-consistent gravitational potential;

� flexibility of tuning and easiness of construction.

No such models exist [yet?]



Fundamental equations

1. Collisionless Boltzmann equation:

v
∂f

∂x
− ∂Φ

∂x
∂f

∂v
= 0 =⇒ f = f

�
I(x, v; Φ)

�
.

distribution function
integrals of motion

gravitational potential

(Assumption: a galaxy is a collisionless system in a steady state)

2. Poisson equation:

∇2Φ(x) = 4π G ρ(x).
total density

(Assumption: Newtonian gravity)

3. The link:

ρ(x) =
���

d
3
v f (x, v).

(Assumption: self-consistency)



Iterative approach

1. Assume a particular distribution function f
�
I
�
;

2. Adopt an initial guess for Φ(x);

3. Establish the integrals of motion I(x, v) in this potential;

4. Compute the density ρ(x) =
���

d
3
v f

�
I(x, v)

�
;

5. Solve the Poisson equation to find the new potential Φ(x);

6. Repeat until convergence.

Origin: Prendergast & Tomer 1970;

used in Kuijken & Dubinski 1995, Widrow+ 2008, Taranu+ 2017 (GalactICs),

Piffl+ 2014, Cole & Binney 2016, Sanders & Evans 2016 (action-based formalism).



How to compute the potential

1. Direct integration:

Φ(x) = −
���

d
3
x
� ρ(x�)× G

|x− x�| .

2. Azimuthal harmonic expansion:

Φ(R , z , φ) =
∞�

m=−∞
Φm(R , z) e

imφ.

3. Spherical harmonic expansion:

Φ(r , θ, φ) =
∞�

l=0

l�

m=−l

Φlm(r)Y
m
l (θ, φ).

4. Basis-set expansion:

Φ(r , θ, φ) =
∞�

n=0

∞�

l=0

l�

m=−l

Φnlm Anl(r)Y
m
l (θ, φ).

(example: self-consistent field method of Hernquist&Ostriker 1992)

interpolated functions



How to compute the potential of a spheroidal system

3. Spherical-harmonic expansion:

Φ(r , θ, φ) =
∞�

l=0

l�

m=−l

Φlm(r)Y
m
l (θ, φ),

Φlm(r) = − 4πG

2l + 1

�
r
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� r

0

dr
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� ∞

r
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�
,

ρlm(r) =

� π

0

dθ

� 2π

0

dφ ρ(r , θ, φ)Y m∗
l (θ, φ).



How to compute the potential of a flattened system
2. Azimuthal-harmonic (Fourier) expansion:

Φ(R , z , φ) =
∞�

m=−∞
Φm(R , z) e

imφ,

ρm(R , z) =
1

2π

� 2π

0

dφ ρ(R , z , φ)e−imφ,

Φm(R , z) = −
��

dR
�
dz

� ρm(R
�, z �)× Ξm(R , z ,R

�, z �),

Ξm(R , z ,R
�, z �) ≡

� ∞

0

dk 2πG Jm(kR) Jm(kR
�) exp(−k |z − z

�|) =

=
2
√
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�
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�
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m
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m
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√
RR � (2ξ)m+1/2 Γ(m + 1)
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2 + R

�2 + (z − z
�)2

2RR � .

analytic expr. for Green’s function:



Gravitational potential extracted from N-body simulations

The spherical-harmonic and azimuthal-harmonic potential approximations
can also be constructed from N-body models.

Advantages:
fast evaluation, smooth forces, suitable for orbit integration and analysis.

Real N-body model Potential approximation

(from Roca-Fabrega+ 2013, 2014)

Work in progress: smooth potentials of FIRE simulations



Actions as integrals of motion

One may use any set of integrals of motion, but actions are special:

J =
1

2π

�
p dx, where p are canonically conjugate momenta for x.



Advantages of action/angle variables

� Clear physical meaning (describe the extent of oscillations in each dimension).

� Most natural description of motion (angles change linearly with time).

� Possible range for each action variable is [0..∞) or (−∞..∞),
independently of the other ones (unlike E and L, say).

� Canonical coordinates ⇒ total mass is computed trivially
M =

�
f
�
x, v

�
d
3
x d

3
v =

�
f
�
J
�
d
3
J d

3θ =
�
f
�
J
�
d
3
J (2π)3,

does not depend on Φ, does not change between iterations.

� Actions are adiabatic invariants (are conserved under slow variation of
potential) ⇒ easy to construct multicomponent models.

� Serve as a good starting point in perturbation theory.

� Efficient methods for conversion between {x, v} and {J,θ} exist
(e.g., Stäckel fudge, Binney 2012, or Torus machine, Binney & McMillan 2016).



“Classical” methods

� Spherical systems:
two of the actions can be taken to be the azimuthal action Jφ ≡ Lz

and the latitudinal action Jϑ ≡ L− |Lz |;
the third one (the radial action) is given by a 1d quadrature:

Jr =
1

π

� rmax

rmin

dr

�
2[E − Φ(r)]− L2/r 2,

where rmin, rmax are the peri- and apocentre radii.
Angles are given by 1d quadratures. For special cases (the isochrone
potential, and its limiting cases – Kepler and harmonic potentials),
these integrals are computed analytically.
Note: a related concept in celestial mechanics are the Delaunay variables.

� Flattened axisymmetric systems – the epicyclic approximation:
motion close to the disk plane is nearly separable into the in-plane
motion (Jφ and Jr as in the spherical case) and the vertical oscillation
with a fixed energy Ez in a nearly harmonic potential (Jz).



State of the art: Stäckel fudge

Fact: orbits in realistic axisymmetric galactic potentials are much better
aligned with prolate spheroidal coordinates.

One may explore the assumption that the motion is separable in these
coordinates (λ, ν).
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Stäckel fudge [Binney 2012]

The most general form of potential that satisfies the separability condition

is the Stäckel potential1: Φ(λ, ν) = − f1(λ)− f2(ν)

λ− ν
.

The motion in λ and ν directions, with canonical momenta pλ, pν ,
is governed by two separate equations:

2(λ−∆2)λ p2λ =

�
E − L

2
z

2(λ−∆2)

�
λ− [I3 + (λ− ν)Φ(λ, ν)],

2(ν −∆2) ν p2ν =

�
E − L

2
z

2(ν −∆2)

�
ν − [I3 + (ν − λ)Φ(λ, ν)].

Under the approximation that the separation constant I3 is indeed
conserved along the orbit, actions are computed as

Jλ =
1

π

� λmax

λmin

pλ dλ, Jν =
1

π

� νmax

νmin

pν dν.

1Note that the potential of the Perfect Ellipsoid [de Zeeuw 1985] is of the Stäckel
form, but it is only one example of a much wider class of potentials.



Stäckel fudge in practice

A rather flexible approximation: for each orbit, we have the freedom of
using two functions f1(λ), f2(ν) (directly evaluated from the actual
potential Φ(R , z)) to describe the motion in two independent directions.
These functions are different for each orbit (implicitly depend on E , Lz , I3).
Moreover, we may choose the focal distance ∆ of the auxiliary prolate
spheroidal coordinate system for each orbit independently.



Accuracy of the Stäckel fudge

Accuracy of action conservation using the Stäckel fudge: � 1% for most
disk orbits, � 10% even for high-eccentricity orbits [except near resonances!].

Interpolation of Jr , Jz on a 3d grid of E , Lz , I3: 10x speed-up
at the expense of a moderate [not always acceptable!] decrease in accuracy.



Other methods for action computation

The accuracy of the Stäckel approximation is “uncontrollable” (cannot be
systematically improved), and it is mainly used in axisymmetric potentials.

However, actions offer the only systematic method for computing the
integrals of motion in a non-perturbative way for an arbitrary potential.

Canonical transformation between true {J,θ} and “toy” {JT ,θT} in some
simple potential (e.g., isochrone), for which the mapping between
position/velocity and action/angle coordinates is known
(Torus construction – McGill&Binney 1990; McMillan&Binney 2008).

This transformation is described by a generating function S(J,θT ),
which can be expanded into Fourier series in θT ; the accuracy of this
approximation depends on the number of terms in the expansion.

A modification of this approach allows one to construct tori for
resonantly-trapped orbits [Kaasalainen 1994; Binney 2016, 2018].



Distribution functions in action space

� Spheroidal components (halo, bulge): double-power-law DF
[Binney 2014, Posti+ 2015, Williams & Evans 2015]

f (J) =
M

(2π J0)3

�
h(J)
J0

�−Γ �
1 +

�
g(J)
J0

�η� Γ−B
η

exp

�
−
�
g(J)
Jcut

�ζ ��
1 + κ tanh

Jφ
Jφ,0

�
,

g(J) ≡ grJr + gzJz + gφ|Jφ|, h(J) ≡ hrJr + hzJz + hφ|Jφ|

� Disk components: quasi-isothermal DF [Binney & McMillan 2011]

f (J) =
Σ̃Ω

2π2 κ2
× κ

σ̃2
r
exp

�
−κ Jr

σ̃2
r

�
× ν

σ̃2
z
exp

�
−ν Jz

σ̃2
z

�
×
�

1 if Jφ ≥ 0,

exp
�

2Ω Jφ
σ̃2
r

�
if Jφ < 0,

Σ̃(Rc) ≡ Σ0 exp
�
− Rc

Rdisk

�
, σ̃2

r (Rc) ≡ σ2
r ,0 exp

�
− 2Rc

Rσ,r

�
, σ̃2

z (Rc) ≡ 2 h2disk ν
2(Rc).

� Alternative disk DF (exponential):

f (J) = M
(2π)3

J
J2
φ,0

exp
�
− J

Jφ,0

�
× J

J2
r,0

exp
�
− J Jr

J2
r,0

�
× J

J2
z,0

exp
�
− J Jz

J2
z,0

�
×

�
1 if Jφ ≥ 0

exp
�

J Jφ
J2
r,0

�



Construction of self-consistent models specified by DFs

Modelling procedure:

� Assume the parameters for the stellar and dark matter DFs

� Iteratively find the self-consistent potential/density corresponding to this DF:
� Assume an initial guess for the potential
� Initialize the action mapper for this potential
� Recompute the density by integrating the DFs over velocity
� Recompute the potential

� Compute the likelihood of the model given the data
(compare the velocity distributions, microlensing depth, rotation curve)

� Adjust the parameters of the DFs

5
−

10
it
er
.
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u
p
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m
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u
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s

The result: ∼ 15 parameters of DFs (mass, scale lengths and heights, velocity

dispersions, etc.) and the final self-consistent potential as a by-product.



Advantages of models based on distribution function

� Clear physical meaning
(localized structures in the space of integrals of motion);

� Easy to compare different models
(how to compare two N-body or N-orbit models?);

� Easy to compare models to discrete observational data;

� Easy to sample particles from the distribution function
(convert to an N-body model);

� Stability analysis
(perturbation theory most naturally formulated in terms of actions);

Caveats:
� Implicitly rely on the integrability of the potential,

ignore the presence of resonant orbit families (but see Binney 2016, 2018);

� So far implemented only for axisymmetric models
(not a fundamental limitation).



Perturbation theory in action space

f (J,θ, t) = f0(J) + �f1(J,θ, t),

H(J,θ, t) = H0(J) + �H1(J,θ, t) = H(x, v, t) ≡ Φ0(x) + �Φ1(x, t) + 1
2v

2.

Linearized Vlasov / collisionless Boltzmann equation:

0 =
∂f

∂t
+
�
H , f

�
≈ ∂f1

∂t
+

∂f1
∂θ

∂H0

∂J
− ∂f0

∂J
∂Φ1

∂θ
.

Φ1(x, t) is the external perturbation augmented with internal self-gravity
(diverges at resonances!).

For the given f0 and Φ1, one may compute the perturbed
DF f1(J,θ, t) [e.g., Monari+ 2016, 2017, 2018] –
so far has only been done under epicyclic approximation,
but a Stäckel generalization is possible.



Impact of disequilibrium on potential estimation

� Campbell+ 2017, Errani+ 2018: � 10− 20% bias/scatter for a
“sweet-spot” mass estimator (single number)

� Li+ 2016: 30− 40% scatter in M/L estimated by JAM models applied
to a sample of Illustris galaxies

� Wang+ 2017: 20− 50% bias/scatter in halo mass/concentration
estimated by spherical Jeans equation for APOSTLE simulations

� El-Badry+ 2017 “When the Jeans don’t fit”: ∼ 20% bias in potential
estimate from FIRE simulations

� Haines+ 2019: up to 50% overestimate of surface density estimated
by 1d Jeans analysis applied to N-body simulations of Laporte et al.

Bottom line: steady-state assumption may substantially bias the results;
need to calibrate your favourite method on realistic simulated data.



– All-purpose galaxy modeling architecture

� Extensive collection of gravitational potential models
(analytic profiles, azimuthal- and spherical-harmonic expansions)

constructed from smooth density profiles or N-body snapshots;

� Conversion to/from action/angle variables;

� Self-consistent multicomponent models with action-based DFs;

� Schwarzschild orbit-superposition models;

� Generation of initial conditions for N-body simulations;

� Various math tools: 1d,2d,3d spline interpolation, penalized spline fitting and

density estimation, multidimensional sampling;

� Efficient and carefully designed C++ implementation, examples,
Python and Fortran interfaces, plugins for Galpy, NEMO, AMUSE.

arXiv:1802.08239, 1802.08255
https://github.com/GalacticDynamics-Oxford/Agama

http://adsabs.harvard.edu/abs/2019MNRAS.482.1525V
http://arxiv.org/abs/1802.08255
https://github.com/GalacticDynamics-Oxford/Agama



