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The problem

⇒

Pathway from 2d surface brightness profile to 3d density profile is non-unique



The problem

Fourier Slice Theorem [Rybizki 1987]:

surface density Σ(X ,Y ) =⇒ its Fourier transform Σ̂(kX , kY )
corresponds to the Fourier transform of the 3d density ρ̂(kX , kY , kZ = 0),
i.e. provides no constraints on ρ̂(. . . , kZ 6= 0).

For an axisymmetric system at an inclination i , nothing is known of its ρ̂
in the “cone of ignorance” with opening angle 90◦ − i around kz .
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Illustration of non-uniqueness of axisymmetric deprojection

It turns out that there is a large family of axisymmetric “konus density”
profiles that are completely invisible at any inclination i ≤ imin < 90◦

[Gerhard & Binney 1996; Kochanek & Rybizki 1996].
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Illustration of non-uniqueness of axisymmetric deprojection

It turns out that there is a large family of axisymmetric “konus density”
profiles that are completely invisible at any inclination i ≤ imin < 90◦

[Gerhard & Binney 1996; Kochanek & Rybizki 1996].

Adding it to an ordinary ellipsoidal density profile, one can make it
boxy or disky, while still appearing perfectly elliptical in projection.

+ =

The degeneracy is much worse for triaxial systems.

Adding kinematic information should lift the degeneracy [Magorrian 1999].



Approaches to deprojection

1. Ellipsoidal assumption: ρ(x , y , z) = ρ(m), m ≡
√

x2 + (y/p)2 + (z/q)2.
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In the axisymmetric case, the projected axis ratio q′ =
√

q2 sin2 i + cos2 i
=⇒ deprojection is possible for inclination angles i > imin ≡ arccos q′.

Generalization to a triaxial case: for a given projected shape and assumed
orientation (viewing angles), the deprojection is either unique or impossible.

Widely used in practice, e.g. Multi-Gaussian Expansion [Cappellari 2002].



Approaches to deprojection

1. Ellipsoidal assumption: ρ(x , y , z) = ρ(m), m ≡
√

x2 + (y/p)2 + (z/q)2.

2. Forward modelling of projected density:

parametric

I choose a suitable functional form
for ρ(x , y , z ; p)

I assume some viewing angles ψ
and parameters p

I compute the projected profile
Σ(X ,Y )

I compare with the observed surface
density and compute deviation χ2

I repeat for different choices of ψ
and p to minimize χ2

non-parametric
(or rather, multiparametric)

I choose a very general / flexible
functional form with many free params
(e.g., splines or a basis set expansion)

I assume some angles ψ and params p

I compute projected Σ

I compare with observations; compute χ2

and add some regularization penalty

I repeat for many choices of ψ and p

[e.g., Magorrian 1999; de Nicola+ 2020]



Photometric fitting

⇒
[reasonably] simple models

multiple components

sky subtraction

foreground masking

PSF convolution

I MGEFit [Cappellari 2002]:
“nonparametric” (multiple elliptical Gaussians) ⇒ ellipsoidal deprojection

I GalFit [Peng+ 2002, 2010]: many flexible 2d profiles,
but deprojection is straightforward only for ellipsoidal models

I ImFit [Erwin 2015]: many 2d and 3d profiles (including user-defined),
may project 3d model to 2d instead of deprojecting 2d to 3d



3D structure of bars

Bars often buckle vertically from the disk plane,
but only in the inner part where the planar orbits
are unstable;
shorter and vertically thick part is associated with
boxy/peanut (B/P) bulges, and the longer and
thinner component can be seen in face-on barlens
galaxies [Athanassoula 2005, 2013].
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[Lütticke+ 2000] [Laurikainen+ 2011] [Portail+ 2015]



X-shaped bar model [Robin+ 2012; Fragkoudi+ 2015]

ρ ∝ sech2(−R)

R =

([( x

Xbar

)c⊥
+
( y

Ybar

)c⊥]c‖/c⊥
+
( z

Zbar

)c‖)1/c‖

c‖, c⊥: boxiness coefficients

Zbar = z0 +

Apea exp
(
− (x − Rpea)2 + y 2

2w 2
pea

)
+

Apea exp
(
− (x + Rpea)2 + y 2

2w 2
pea

)
Apea: X/peanut amplitude
Rpea: peanut location
wpea: peanut width



First application: edge-on projections

face-on view

edge-on view, ψ = 0
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First application: edge-on projections

The fitted model qualitatively recovers the 3d density profile,
though not without some defects ψ = 45◦

[Dattathri+ 2024]



Degeneracies in determining bar orientation
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onIt is impossible to distinguish a rotated bar
(0 < ψ < imax . 90◦) from a shorter bar
viewed at ψ = 0◦ just from photometry.

(It might be easier at lower inclinations i < 90◦).

Kinematics / dynamical modelling should help?

[Dattathri+ 2024]



Modelling approaches for barred galaxies

Challenges: triaxial geometry, chaotic regions in phase space

Goals: Ω Φ

Jeans modelling – –

Distribution functions, e.g., f (J) ? ?

Tremaine–Weinberg ± –

Orbital response models + +

Guided N-body simulations (made-to-measure) + +

Schwarzschild orbit-superposition modelling + +



Measurement of the pattern speed: Tremaine & Weinberg (1984)

Ωp sin i =
〈Vlos〉
〈X 〉

〈Vlos〉(Y ) ≡
∫∞
−∞ Vlos(X ,Y ) Σ(X ,Y ) dX∫∞

−∞Σ(X ,Y ) dX

〈X 〉(Y ) ≡
∫∞
−∞ X Σ(X ,Y ) dX∫∞
−∞Σ(X ,Y ) dX

+ Simple to implement

− Works only in a limited range of inclinations
15◦ . i . 50–70◦ [Zou+ 2019; Borodina+ 2023]

− Need to integrate to ±∞
(see Dehnen+ 2023 for improvement)

[Zou+ 2019]



Modelling approaches for barred galaxies: response models
[Contopoulos & Grosbøl 1986, 1988; Patsis+ 1991; Kaufmann & Contopoulos 1996]

2d response models:

– assume parameters for potential, pattern speed, etc.
– construct the network of periodic orbits
– populate nearby orbits and compute their surface density
– compare morphological features with observations
– vary the parameters until a good match is found

observed galaxy response model
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Modelling approaches for barred galaxies: made-to-measure

Introduced by Syer & Tremaine 1996,
grown up and flourished in Ortwin Gerhard’s group

[Bissantz+ 2004, de Lorentzi+ 2007, Portail+ 2015; Blaña+ 2019];

several other implementations exist [Dehnen 2009;

Long & Mao 2012; Hunt & Kawata 2013; Malvido & Sellwood 2015].

Idea: evolve an N-body model while continuously
adjusting particle weights to match the observables
(density and kinematics).

Has been applied to the Milky Way bar [Portail+ 2017]

and to a few external galaxies.

observed galaxy (M31) M2M model [Blaña+ 2019]
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Modelling approaches for barred galaxies: orbit superposition

Introduced by Schwarzschild (1979) as a practical approach
for constructing dynamically self-consistent triaxial models
with prescribed ρ(x)⇔ Φ(x).

To invert the equation ρ(x) =

∫∫∫
f
(
I [x, v | Φ]

)
d3v,

discretize both the density profile and the distribution function:

ρ(x) =⇒ cells of a spatial grid; mass of each cell is Mc =

∫∫∫
x∈Vc

ρ(x) d3x ;

f (I) =⇒ collection of orbits with unknown weights [to be determined]:

f (I) =

Norb∑
k=1

wk δ(I − Ik)

integrals of motion

each orbit is a delta-function in the space of integrals of motion

adjustable weight of each orbit
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Max Ernst – Ubu Imperator



Schwarzschild’s orbit-superposition method: self-consistency

orbits in the model target density

discretized orbit density
(fraction of time tkc that k-th orbit spends in c-th cell)

discretized density
(mass Mc in grid cells)

For each c-th cell we require
∑

k wk tkc = Mc , where wk ≥ 0 is orbit weight



Schwarzschild’s orbit-superposition method: kinematics

orbits in the model

target LOSVDorbit LOSVDs



Schwarzschild’s orbit-superposition method: kinematics

Gauss–Hermite parametrization of LOSVDs [van der Marel & Franx 1993; Gerhard 1993]



Schwarzschild’s orbit-superposition method: fitting procedure
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Schwarzschild’s orbit-superposition method: fitting procedure

I Assume some potential Φ(x)
(e.g., from the deprojected luminosity profile plus parametric DM halo or SMBH)

I Construct the orbit library in this potential:
for each k-th orbit, store its contribution to the discretized density profile

tkc , c = 1..Ncell and to the kinematic observables ukn, n = 1..Nobs

I Solve the constrained optimization problem to find orbit weights wk :

minimize χ2 + S ≡
Nobs∑
n=1

(∑Norb

k=1 wk ukn − Un

δUn

)2

+ S
(
{wk}

)
subject to wk ≥ 0, k = 1..Norb,

Norb∑
k=1

wk tkc = Mc , c = 1..Ncell

I Repeat for different choices of potential and find the one that has lowest χ2

regularization term

observational constraints

their uncertainties

density constraints (cell masses)



Schwarzschild’s orbit-superposition method: implementations

I theoretical studies in triaxial geometry: Schwarzschild 1979, 1993; Pfenniger 1984;

Statler 1987; Merritt & Fridman 1996; Siopis & Kandrup 2000; Vasiliev 2013

I spherical codes: Richstone & Tremaine 1984; Rix+ 1997; Jalali & Tremaine 2010;

Breddels & Helmi 2013; Kowalczyk+ 2017

I axisymmetric: “Leiden” [van der Marel, Cretton, Cappellari, . . . – since 1998]

I axisymmetric: “Nukers” [Gebhardt, Richstone, Kormendy, . . . – since 2000]

I axisymmetric: “MasMod” [Valluri, Merritt, Emsellem – since 2004]

I triaxial/Milky Way bar: Zhao, Wang, Mao 1996, 2012

I triaxial: van den Bosch, van de Ven . . . – since 2008 ⇒ “Dynamite”

I triaxial: “SMART” [Neureiter+ 2021]

I triaxial: “Forstand” [Vasiliev & Athanassoula 2015; Vasiliev & Valluri 2020]



Schwarzchild modelling of deprojected bars

MUSE-like kinematic maps (1′ FoV) of a Milky Way-like galaxy at D = 20 Mpc

[Dattathri+ 2024]



Recovery of bar pattern speed

Ω is recovered almost perfectly if the true 3d density is used,
or to within 10% if the deprojected density is used.

This is for the most challenging edge-on orientation,
where the Tremaine–Weinberg method is not applicable!

ψ = ψtrue = 45◦

[Dattathri+ 2024]



Recovery of bar orientation

Bar orientation is also constrained much better than from pure photometry
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Recovery of black hole mass

Central supermassive black hole

I does not destroy the bar [Wheeler+ 2023]

I has only an upper limit on M• in these models

I is very sensitive to the accuracy of
reconstruction of enclosed stellar mass



Another implementation of Schwarzschild’s method for bars
by Tahmasebzadeh+ 2021, 2022, based on the triaxial code Dynamite;
use MGE for deprojection, separately for the main disc and the bar

[Tahmasebzadeh+ 2024]



Summary

I Photometric bar deprojection:

possible with IMFIT, but has some degeneracies.

I Schwarzchild modelling of barred galaxies: complicated but feasible;

recovers pattern speed, orientation and stellar mass.
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