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WFPC2 captures a SMBH binary kicking stars out of the bulge



Evolutionary stages of binary supermassive black holes
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Gravitational slingshot and binary hardening

Three-body scattering:

a star passing near the binary is e
ejected with a typical velocity

o~y [ommo .
Vej (my+my)2 Vbin > O.

These stars carry away energy and
angular momentum, so that the binary semimajor axis a decreases:

i <1> ~ 16@ = Sql [Quinlan 1996]
dt \ a o

Thus if the density of stars p remains constant, the binary hardens
at a constant rate. However, the reservoir of low angular
momentum stars (the loss cone) may be depleted quickly =

the binary stalls at a radius aga ~ (0.1 — 0.4)apard-



Loss cone theory

Loss cone angular momentum: L c = /2G(my + my) a
Stars with L < L ¢ are eliminated on a dynamical timescale Tqyn.
The crucial parameter is the timescale for loss cone repopulation.

In the absence of other processes, the repopulation time is
L2 0.3403

Trep ~ Trel % where T = CZmypr A is the relaxation time.
* Mx

circ
If Trep S Tayn, the loss cone is full.

However, real galaxies are in the opposite (empty loss cone) regime.
7-dyn
Trep
Relaxation is too slow for an efficient repopulation of the loss cone:
in the absense of other processes, the binary would not merge

in a Hubble time.
This is the “final-parsec problem” [Milosavijevic&Merritt 2003]

d
In this case the hardening rate S = E(afl) St



N-scaling in the empty loss cone regime

In galaxy-scale N-body simulations, the number of particles
N < 100 is much less than the number of stars in the galaxy N,.

Hardening rate S = %(a_l) x T,;/I OC@

signature of empty loss cone regime
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Merger simulations hint for a full loss cone
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Hardening rates in merger simulations isolated
were found to be N-independent
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Loss cone in non-spherical stellar systems

Angular momentum L of any star is not conserved, but experiences
oscillations due to torques from non-spherical distribution of stars.

More stars can attain low L and enter the loss cone at some point in their
(collisionless) evolution, regardless of two-body relaxation.

This has led to the conclusion that the loss cone in axisymmetric and
especially triaxial systems remains full.
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Evolution of isolated systems in different geometries

But this can't be the whole story:

in N-body simulations of isolated systems with different geometry
— spherical, axisymmetric and triaxial — the hardening rate still
decreases with N (but less strongly in non-spherical cases),

and is several times lower than Sg,.

[Vasiliev, Antonini & Merritt 2014]
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Problems with direct N-body simulations

» Galaxies have N, ~ 1019712 but simulations — only N ~ 106;

» Cannot simply extrapolate the hardening rate to different N:
collisional relaxation scales as N1,
collisionless processes are independent of N;

» We can't afford much higher N even with the latest hardware
(at least using direct-summation codes)
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Need a simulation method in which we may
» accurately follow fast three-body scattering events;
» track the depletion and slow repopulation of the loss cone;
» account for the change of galaxy shape and erosion of density cusp;

» adjust the relaxation rate independently of particle number
(in particular, attain the collisionless limit by switching it off).

Sounds too good to be feasible?



A novel simulation method

» Suppression of relaxation:
use spatial and temporal smoothing and oversampling;

» Gravitational potential:
spherical-harmonic expansion for V geometry;

» Star-binary interactions:
explicit tracking of energy and angular momentum exchanges
in three-body scattering events;

» Addition of relaxation:
local diffusion coefficients for velocity perturbations
Assumptions:
> quasi-stationary evolution, well defined center;
» hard SBH binary already formed

[Vasiliev 2015]



Global dynamics: smooth field method

Spherical-harmonic expansion for the global stellar potential
(cf. Aarseth 1967, Hernquist&Ostriker 1992) :
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Use long intervals between potential update (2 Tqyn);
take many sampling points from each particle’s trajectory.

Reduce discreteness
noise by a couple of
orders of magnitude
for the same N
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Three-body scattering and binary evolution

» Two black holes on a Keplerian orbit;
» Test particles in time-dependent gravitational field;

» Record changes in energy and angular momentum of each particle,
adjust the binary orbit parameters (semimajor axis a and eccentricity e)
using conservation laws [e.g. Sesana+ 2006,2007; Meiron&Laor 2012].

» Add gravitational-wave emission:

d(1/a)
dt

de

dt
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[Peters 1964].




Collisional relaxation and the Monte Carlo method
Spitzer's (1971) formulation of Monte Carlo method in terms of
local (position-dependent) velocity perturbations:

Av| = (AVH)At + G <AVH2>At7 Perturbations applied

after each timestep of
Av, =0 (AVi)At, (1,¢ ~ N(0,1) numerical orbit integration

v(Av)) = — (1 + ﬂ) hya

(Avi) =5 (b + ky2) s
(Av?) = % (2l 4+ 3h 2 — h)2)
0
lh = r/ dE'|f(E"), &~ distribution function of stars
|
E , [ E (_/’,_ gravitational potential
lyp=T dE'f(E") | ——== ,
o(r) E —o(r)

M=1672G%m, In A = 1672G*Myor x|(N71InA).

scalable amplitude of perturbation



Implementations of the Monte Carlo method

Name Reference relaxation treatment timestep 1:11 BH? remarks

Princeton | Spitzer&Hart(1971), Clocal) dif.coefs. in  velocity, o< Ty, - -
Spitzer& Thuan(1972)  Maxwellian background f(r, v)

Cornell Marchant&Shapiro dif.coef. in E, L, self-consistent indiv., Tdy,, — + particle cloning
(1980) background f(E)

- Hopman (2009) same — 4+ stellar binaries

Hénon Hénon(1971) local pairwise interaction, self- o T, - -

consistent bkgr. f(r, v vy)

— Stodotkiewicz(1982) Hénon's block, T,e(r) — —  mass spectrum, disc shocks
Stodotkiewicz(1986) binaries, stellar evolution
Giersz(1998) same same + —  3-body scattering (analyt.)

Mocca | Hypki&Giersz(2013) same same +  —  single/binary stellar evol.,

few-body scattering (num.)
Joshi+(2000) same o< Th(r=0) + —  partially parallelized

Cme Umbreit+(2012), (shared) + +  fewbody interaction, single/
Pattabiraman+(2013) binary stellar evol., GPU

Mge(ssy)? | Freitag&Benz(2002) same indiv.oc T — 4+ cloning, SPH physical collis.

- Sollima&Mastrobuono- same — —  realistic tidal field

Battisti(2014)

Vasiliev(2015) if.coef. in velocity, self- indiv.oc Ty, -+ arbitrary geometry
consistent background f(E)

1 . .
One-to-one correspondence between particles and stars in the system

Massive black hole in the center, loss-cone effects



Calibration of Monte Carlo simulations

» Monte Carlo simulations are in quantitative agreement with direct
N-body simulations for all combinations of parameters that we
explored (N, mass ratio, eccentricity, geometry, ...)

» There are no free parameters in the Monte Carlo method
(apart from the pre-factor 7 ~ 0.02 in the Coulomb logarithm log A = logn/N).
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Long-term binary evolution in Monte Carlo simulations

> Hardening rate decreases with time in all three geometries.

> In the absense of relaxation (N, = c0), it drops to zero in spherical
and axisymmetric cases, but stays high enough in triaxial case.

» Systems with relaxation eventually settle to a constant hardening
rate at large enough time.

» There is little difference between axisymmetric and triaxial systems
even for N, as large as 5 x 109, but in the collisionless limit their
evolution is qualitatively different!
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Qualitative analysis of long-term collisionless evolution

» To shrink the binary by a factor of two, one needs to eject stars
with total mass ~ M,; thus one needs to supply a fewx M,
worth of stars into the loss cone over the entire evolution.

» Stars on centrophilic orbits in the extended loss region can
eventually enter the loss cone; but in the axisymmetric case the
volume of loss region shrinks as the binary hardens.
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[Vasiliev, Antonini & Merritt 2015]



Summary

» The longest evolutionary stage of a sub-parsec binary is driven
by loss-cone repopulation;

» Binary black holes need fewx108 — 10° years to coalesce
in gas-poor galaxies;

» The “final-parsec problem” occurs in the idealized cases,
but in realistic galactic mergers even minor deviations from
axisymmetry are sufficient to keep the loss cone non-empty;

» Accurate treatment of this problem is difficult to achieve
in conventional N-body simulations, but can be done with
the special-purpose Monte Carlo method.

Thank you!



