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Evolutionary stages of binary supermassive black holes
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Gravitational slingshot and binary hardening

Three-body scattering:

a star passing near the binary is
ejected with a typical velocity

vej ∼
√

m1m2
(m1+m2)2 vbin � σ.

These stars carry away energy and
angular momentum, so that the binary semimajor axis a decreases:

d

dt

(
1

a

)
≈ 16

G ρ

σ
≡ Sfull [Quinlan 1996]

Thus if the density of stars ρ remains constant, the binary hardens
at a constant rate. However, the reservoir of low angular
momentum stars (the loss cone) may be depleted quickly ⇒
the binary stalls at a radius astall ∼ (0.1− 0.4)ahard.



Loss cone theory

Loss cone angular momentum: LLC ≡
√

2G (m1 + m2) a.

Stars with L < LLC are eliminated on a dynamical timescale Tdyn.

The crucial parameter is the timescale for loss cone repopulation.

In the absence of other processes, the repopulation time is

Trep ∼ Trel
L2

LC

L2
circ

, where Trel =
0.34σ3

G 2 m? ρ? ln Λ
is the relaxation time.

If Trep . Tdyn, the loss cone is full.

However, real galaxies are in the opposite (empty loss cone) regime.

In this case the hardening rate S ≡ d

dt
(a−1) '

Tdyn

Trep
Sfull.

Relaxation is too slow for an efficient repopulation of the loss cone:
in the absense of other processes, the binary would not merge
in a Hubble time.
This is the “final-parsec problem” [Milosavljević&Merritt 2003]



N-scaling in the empty loss cone regime

In galaxy-scale N-body simulations, the number of particles
N . 106 is much less than the number of stars in the galaxy N?.

Hardening rate S ≡ d

dt
(a−1) ∝ T−1

rel ∝ N−1.
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Merger simulations hint for a full loss cone

isolated

merger

isolated

merger

[Preto+ 2011] [Khan+ 2011]

Hardening rates in merger simulations

were found to be N-independent



Loss cone in non-spherical stellar systems

Angular momentum L of any star is not conserved, but experiences
oscillations due to torques from non-spherical distribution of stars.

More stars can attain low L and enter the loss cone at some point in their
(collisionless) evolution, regardless of two-body relaxation.

This has led to the conclusion that the loss cone in axisymmetric and
especially triaxial systems remains full.



Evolution of isolated systems in different geometries

But this can’t be the whole story:

in N-body simulations of isolated systems with different geometry
– spherical, axisymmetric and triaxial – the hardening rate still
decreases with N (but less strongly in non-spherical cases),
and is several times lower than Sfull.

[Vasiliev, Antonini & Merritt 2014]
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Problems with direct N-body simulations

I Galaxies have N? ∼ 1010−12, but simulations – only N ∼ 106;

I Cannot simply extrapolate the hardening rate to different N:
collisional relaxation scales as N−1,
collisionless processes are independent of N;

I We can’t afford much higher N even with the latest hardware
(at least using direct-summation codes)

Need a simulation method in which we may

I accurately follow fast three-body scattering events;

I track the depletion and slow repopulation of the loss cone;

I account for the change of galaxy shape and erosion of density cusp;

I adjust the relaxation rate independently of particle number
(in particular, attain the collisionless limit by switching it off).

Sounds too good to be feasible?
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A novel simulation method

I Suppression of relaxation:
use spatial and temporal smoothing and oversampling;

I Gravitational potential:
spherical-harmonic expansion for ∀ geometry;

I Star-binary interactions:
explicit tracking of energy and angular momentum exchanges
in three-body scattering events;

I Addition of relaxation:
local diffusion coefficients for velocity perturbations

Assumptions:

I quasi-stationary evolution, well defined center;

I hard SBH binary already formed

[Vasiliev 2015]



Global dynamics: smooth field method

Spherical-harmonic expansion for the global stellar potential
(cf. Aarseth 1967, Hernquist&Ostriker 1992) :

Φ(r , θ, φ) =
lmax∑
l=0

l∑
m=−l

Φl,m(r)Ym
l (θ, φ);

Φl,m(r) = − 4πG

2l + 1

[
r−l−1

∑
ri<r

miY
m
l (θi , φi )r

l
i + r l

∑
ri>r

miY
m
l (θi , φi )r

−1−l
i

]

Use long intervals between potential update (& Tdyn);
take many sampling points from each particle’s trajectory.
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Three-body scattering and binary evolution

I Two black holes on a Keplerian orbit;

I Test particles in time-dependent gravitational field;

I Record changes in energy and angular momentum of each particle,
adjust the binary orbit parameters (semimajor axis a and eccentricity e)

using conservation laws [e.g. Sesana+ 2006,2007; Meiron&Laor 2012].

I Add gravitational-wave emission:

d(1/a)

dt

∣∣∣∣
GW

=
64

5

G 3M3
•

c5a5

q

(1 + q)2

1 + 73
24e

2 + 37
96e

4

(1− e2)7/2
,

de

dt

∣∣∣∣
GW

= −G 3M3
•

c5a4

q

(1 + q)2

e(304 + 121e2)

15(1− e2)5/2
[Peters 1964].



Collisional relaxation and the Monte Carlo method
Spitzer’s (1971) formulation of Monte Carlo method in terms of
local (position-dependent) velocity perturbations:

∆v‖ = 〈∆v‖〉∆t + ζ1

√
〈∆v2

‖ 〉∆t ,

∆v⊥ = ζ2

√
〈∆v2

⊥〉∆t , ζ1, ζ2 ∼ N (0, 1)

v〈∆v‖〉 = −
(

1 + m
m?

)
I1/2 ,

〈∆v2
‖ 〉 = 2

3

(
I0 + I3/2

)
,

〈∆v2
⊥〉 = 2

3

(
2I0 + 3I1/2 − I3/2

)
,

I0 ≡ Γ

∫ 0

E
dE ′ f (E ′),

In/2 ≡ Γ

∫ E

Φ(r)
dE ′ f (E ′)

(
E ′ − Φ(r)

E − Φ(r)

)n/2

,

Γ ≡ 16π2G 2m? ln Λ = 16π2G 2Mtot × (N−1
? ln Λ).

distribution function of stars

gravitational potential

scalable amplitude of perturbation

Perturbations applied
after each timestep of
numerical orbit integration



Implementations of the Monte Carlo method
Name Reference relaxation treatment timestep 1:11 BH2 remarks

Princeton Spitzer&Hart(1971),
Spitzer&Thuan(1972)

local dif.coefs. in velocity,
Maxwellian background f (r, v)

∝ Tdyn − −

Cornell Marchant&Shapiro
(1980)

dif.coef. in E , L, self-consistent
background f (E)

indiv., Tdyn − + particle cloning

− Hopman (2009) same − + stellar binaries

Hénon Hénon(1971) local pairwise interaction, self-
consistent bkgr. f (r, v‖, v⊥)

∝ Trel − −

− Stodo lkiewicz(1982) Hénon’s block, Trel (r) − − mass spectrum, disc shocks
Stodo lkiewicz(1986) binaries, stellar evolution

Giersz(1998) same same + − 3-body scattering (analyt.)
Mocca Hypki&Giersz(2013) same same + − single/binary stellar evol.,

few-body scattering (num.)

Joshi+(2000) same ∝ Trel (r = 0) + − partially parallelized
Cmc Umbreit+(2012),

Pattabiraman+(2013)
(shared) + + fewbody interaction, single/

binary stellar evol., GPU

Me(ssy)2 Freitag&Benz(2002) same indiv.∝ Trel − + cloning, SPH physical collis.

− Sollima&Mastrobuono-
Battisti(2014)

same − − realistic tidal field

Raga Vasiliev(2015) local dif.coef. in velocity, self-
consistent background f (E)

indiv.∝ Tdyn − + arbitrary geometry

1
One-to-one correspondence between particles and stars in the system

2
Massive black hole in the center, loss-cone effects



Calibration of Monte Carlo simulations

I Monte Carlo simulations are in quantitative agreement with direct
N-body simulations for all combinations of parameters that we
explored (N, mass ratio, eccentricity, geometry, ...)

I There are no free parameters in the Monte Carlo method
(apart from the pre-factor η ∼ 0.02 in the Coulomb logarithm log Λ = log ηN).
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Long-term binary evolution in Monte Carlo simulations

I Hardening rate decreases with time in all three geometries.

I In the absense of relaxation (N? =∞), it drops to zero in spherical
and axisymmetric cases, but stays high enough in triaxial case.

I Systems with relaxation eventually settle to a constant hardening
rate at large enough time.

I There is little difference between axisymmetric and triaxial systems
even for N? as large as 5× 106, but in the collisionless limit their
evolution is qualitatively different!
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Qualitative analysis of long-term collisionless evolution

I To shrink the binary by a factor of two, one needs to eject stars
with total mass ∼ M•; thus one needs to supply a few×M•
worth of stars into the loss cone over the entire evolution.

I Stars on centrophilic orbits in the extended loss region can
eventually enter the loss cone; but in the axisymmetric case the
volume of loss region shrinks as the binary hardens.
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[Vasiliev, Antonini & Merritt 2015]



Summary

I The longest evolutionary stage of a sub-parsec binary is driven
by loss-cone repopulation;

I Binary black holes need few×108 − 109 years to coalesce
in gas-poor galaxies;

I The “final-parsec problem” occurs in the idealized cases,
but in realistic galactic mergers even minor deviations from
axisymmetry are sufficient to keep the loss cone non-empty;

I Accurate treatment of this problem is difficult to achieve
in conventional N-body simulations, but can be done with
the special-purpose Monte Carlo method.

Thank you!


