
Galactic dynamics with

part 1: foundations

Eugene Vasiliev

Galaxy Modelling & Galactic centre workshop

University of Surrey, December 2024

Observational and theoretical context

[credit: ESA/Gaia]

Milky Way rotation curve

[Hattori+ 2021]

Sagittarius

Al
ep

h

Arjuna+
Sequoia+

I’itoi

Thamnos

Helmi
St.

M
W

TD High-α
Disk

W
u
ko

n
g

In-Situ Halo

GSE

Classification of accreted stars

[Naidu+ 2020]

Agama software package

development started in 2015;
code paper published in 2018;
used in ≳350 publications.

Main features:

▶ core library written in C++;

▶ OpenMP parallelization;

▶ hand-made Python interface;

▶ extensible with user-defined functions;

▶ several dozen tests and example
programs in C++ and Python;

▶ detailed documentation (∼140 pages);

▶ ∼80 000 lines of code.

Structure of the Agama library

C++ core =⇒ shared library agama.so

computationally heavy parts (potentials, actions, orbit integration, etc.);
built-in density, potential and DF models

Python interface (C & C++)

vectorization (operation on arrays);
OpenMP parallelization

additional Python routines

math & coord utility functions;
Forstand orbit-superposition code;
interfaces for Galpy and Gala

Agama potentials can be used in
Galpy and Gala

user scripts in Python (including custom density, potential & DF models)

external gravity
source interfaces
for N-body codes

NEMO, AMUSE, Gadget4, Arepo

C, Fortran
and Julia
interfaces

GSL (C) & Eigen (C++) math libs CVXOPT quad. opt. solver (Python)

some mathsy stuff (C & Fortran)

Structure of the Agama library
mathemathal foundations: splines, integration, sampling, coordinates, . . .

density & potential models, Poisson solvers

orbit integration

action/angle variables

distribution functions

GalaxyModel class; computation of moments, velocity distributions, . . .

self-consistent models: DF-based and orbit-superposition

comparison with observations, modelling of streams, inference on potential, . . .

Gravitational potential

Task: given the density profile ρ(x), determine the potential Φ(x)
from the Poisson equation: ∇2Φ = 4π G ρ.

Example 1: spherical Plummer model

ρ(r) =
3M

4π a3
(
1 + r 2/a2)5/2

=⇒ Φ(r) = − G M√
r 2 + a2

.

Example 2: triaxial Hernquist model

ρ(x , y , z) =
M

2π abc s (1 + s)3
, s ≡

√
x2

a2
+

y 2

b2
+

z2

c2
=⇒

Φ(x , y , z) = −G M

∫ ∞

0

dτ

(
1 +

√
x2

a2+τ
+ y2

b2+τ
+ z2

c2+τ

)−2

2
√

(a2 + τ)(b2 + τ)(c2 + τ)
.

It gets very complicated very quickly!

Gravitational potential
Commonly used analytic potential–density pairs: Plummer, NFW,

MiyamotoNagai, Dehnen, Ferrers . . .

If one needs more flexibility, there are three general-purpose Poisson solvers:

0. Direct integration:

Φ(x) = −
∫∫∫

d3x ′ ρ(x′)× G

|x− x′| .

1. Azimuthal-harmonic expansion (CylSpline):

Φ(R , z , ϕ) =
∞∑

m=−∞

Φm(R , z) e
imϕ.

2. Spherical-harmonic expansion (Multipole):

Φ(r , θ, ϕ) =
∞∑
l=0

l∑
m=−l

Φlm(r)Y
m
l (θ, ϕ).

3. BasisSet expansion (a.k.a. self-consistent field method of Hernquist&Ostriker 1992):

Φ(r , θ, ϕ) =
∞∑
n=0

∞∑
l=0

l∑
m=−l

Φnlm Anl(r)Y
m
l (θ, ϕ).

(impractical)

interpolated functions

Gravitational potential

Workflow for the Multipole potential expansion:

original ρ(r , θ, ϕ)

≈

approximate

ℓmax∑
ℓ=0

ℓ∑
m=−ℓ

ρℓm(r)Y
m
ℓ (θ, ϕ)

solve Poisson eqn for each term

Φℓm(r) = − 4π G

2ℓ+ 1

[
r−ℓ−1

∫ r

0
ρℓm(s) s

ℓ+2 ds + r ℓ
∫ ∞

r
ρℓm(s) s

1−ℓ ds

]

ℓmax∑
ℓ=0

ℓ∑
m=−ℓ

Φℓm(r)Y
m
ℓ (θ, ϕ)

=

Φ(r , θ, ϕ)

Multipole and BasisSet potentials are well-suited for extended but not too flattened profiles;
CylSpline is ideal for disky profiles, but has a finite spatial extent and doesn’t like cusps.

Composite and time-dependent potentials

20 kpc

time=-1.50 Gyr

20 kpc

time=-0.50 Gyr

20 kpc

time= 0.00 Gyr

t = −1.5 Gyr

t = −0.5 Gyr

t = 0.0 Gyr

Potentials can be added, scaled or interpolated with time, rotated (e.g., bar
or spiral arms), shifted along a time-dependent trajectory, etc.

Example: potentials of Milky Way and LMC extracted from an N-body simulation.

Gravitational potential: example 1
User-defined density model: a boxy bar ρ(x , y , z) = ρ0 exp

(
− s1/n

)
,

where s ≡
[
(x/a)k + (y/b)k + (z/c)k

]1/k
is the generalized ellipsoidal

radius (an ordinary ellipsoid has k = 2), and n is the Einasto index.

def dens_bar(xyz):
x,y,z = abs(xyz).T
s = ((x/a)**k + (y/b)**k + (z/c)**k)**(1./k)
return rho0 * numpy.exp(-s**(1./n))

pot_bar = agama.Potential(type=’Multipole ’, density=dens_bar ,
lmax=20, mmax=10, symmetry=’triaxial ’)

Gravitational potential: example 2

One may construct these potential expansions either from an analytic
density profile (including any user-defined Python function for ρ or Φ)
or from an N-body snapshot, specifying the desired level of symmetry.

pot_nbody = agama.Potential(type=’CylSpline ’,
particles =(pos ,mass), symmetry=’bisymmetric ’)

1050510

10

5

0

5

10

1050510

10

5

0

5

10

1050510

10

5

0

5

10

original snapshot triaxial bisymmetric

Numerical integration of orbits

One of the most common tasks in galactic dynamics.
Examples: orbits in the MW bar; test-particle simulations of a tidal stream

10 5 0 5 10

x [kpc]

10

5

0

5

10

y
 [

kp
c]

Sun

60 40 20 0 20 40 60
x

60

40

20

0

20

40

60

y

Numerical integration of orbits: example

agama.setUnits(length=1, velocity=1, mass =1)

pot_mw = agama.Potential(’McMillan17.ini’)
time , traj = agama.orbit(potential=pot_mw ,

ic=[-8.2, 0, 0.02, 13, 245, 8], time=-2.0, trajsize =1001)
R = (traj [: ,0]**2 + traj [: ,1]**2)**0.5
z = traj [:,2]

8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4
R

0.15

0.10

0.05

0.00

0.05

0.10

0.15

z

2.0 1.5 1.0 0.5 0.0
time

0.15

0.10

0.05

0.00

0.05

0.10

0.15

z

2.0 1.5 1.0 0.5 0.0
time

8.0

8.2

8.4

8.6

8.8

9.0

9.2

9.4

R

#Note: distances are in kpc, velocities in km/s ⇒ time in kpc/(km/s)=0.978 Gyr

see tutorial potential orbits.ipynb for much more detail

Action–angle variables

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

0.0 0.5 1.0
2.0

1.5

1.0

0.5

Φ
(R

)
+
p

2 φ
/(

2R
2)

0.0 0.5 1.0

R
0.020.04

Φ(R,z)−Φ(R,0)

0.5

0.0

0.5

z

m
e
ri

d
io

n
a
l
p
la

n
e

e
q
u
a
to

ri
a
l
p
la

n
e

Jz

Jϕ
Jr

Most orbits in axisymmetric potentials
look like ”rectangular tori” with
three parameters defining the shape:
Jϕ ≡ Lz = Rg vcirc(Rg) determines
the overall size of the orbit (“guiding radius” Rg);
JR determines the extent of radial oscillations;
Jz does the same for vertical oscillations.

Corresponding phase angles θϕ,R,z determine
the location on the orbit.

0 1 2 3 4 5
R

3

2

1

0

1

2

3

z

Rg

Actions are defined as Ji ≡ 1
2π

∮
pi dxi ,

and are computed in the Stäckel
approximation [Binney 2012],
using spheroidal coordinates for xi .

Inverse transformation {J,θ} ⇒ {x, v}
is provided by the Torus code
[Binney & McMillan 2017].

Action–angle variables: example

af = agama.ActionFinder(pot_mw)

actions , angles = af(posvel , angles=True , frequencies=False)
J_R , J_z , J_phi = actions.T
theta_R , theta_z , theta_phi = angles.T

100 50 0 50 100

VR [km/s]

150

200

250

300

−
V
φ

[k
m
/s

]

0.4 0.2 0.0 0.2 0.4

θφ−π [radian]

1000

1200

1400

1600

1800

2000

2200

2400

2600

−
J
φ

[k
p
c
·k

m
/s

]

0 50 100 150 200

Jr [kpc ·km/s]

1000

1200

1400

1600

1800

2000

2200

2400

2600

−
J
φ

[k
p
c
·k

m
/s

]

#posvel is an array of 6d phase-space coords in Cartesian frame

Gaia sample of nearby stars (D < 100 pc)

other applications: clustering in the integrals space; study of resonances, . . .

Distribution functions

DF f (x, v) offers a complete description of a stellar population.

Fundamental principle of stellar dynamics (Jeans’s theorem):

in a steady state, DF must be a function of integrals of motion f
(
I(x, v; Φ)

)
,

and it is often convenient to use actions J as integrals I.
Two ways of constructing a DF in Agama:

▶ Using the Cuddeford–Eddington [anisotropic] inversion formula
to obtain the DF of the form f (E , L) = f̂

(
E + L2/(2r 2a)

)
L−2β0

corresponding to a given density ρ(r) and potential Φ(r):

This DF is internally converted to the form f (J).

▶ Using an ad hoc expression for the DF f (J), either one of built-in
models (DoublePowerLaw, QuasiIsothermal, Exponential) or a
user-defined Python function:

df_qs = agama.DistributionFunction(type=’QuasiSpherical ’,
density=dens , potential=pot , beta0 =0.3, r_a =10)

df_dp = agama.DistributionFunction(type=’DoublePowerLaw ’,
J0=J0 , slopeIn=Gamma , slopeOut=Beta , mass =1)

Distribution function applications: classification

df_thin = agama.DistributionFunction(type=’QuasiIsothermal ’,
potential=pot_mw , mass =0.7, Rdisk =2.5, Hdisk =0.15,
sigmar0 =50, Rsigmar =10)

df_thick = agama.DistributionFunction(type=’QuasiIsothermal ’,
potential=pot_mw , mass =0.3, Rdisk =2.5, Hdisk =0.40,
sigmar0 =150, Rsigmar =10)

df_total = agama.DistributionFunction(df_thin , df_thick)
prob_thick = df_thick(actions) / df_total(actions)

100 150 200 250 300
−Vφ [km/s]

0

50

100

150

200

√ V
2 R

+
V

2 z
[k

m
/s

]

1000 1500 2000 2500
−Jφ [kpc ·km/s]

0

50

100

150

200

J
r
+
J
z

[k
p
c
·k

m
/s

]

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
.

th
ic

k

Distribution function applications: potential inference

DF is a probability distribution for finding a star with a given position and
velocity, and it also depends on the potential Φ via the integrals of motion I.
By maximising the likelihood of the observed dataset, one can determine the
best-fit parameters α, β of the stellar system, including its mass distribution.

lnL =
∑Nstars

i=1
ln f

(
I
(
x, v ; Φ(x ; α)

)
; β

)

−2 −1 0 1 2

log(R/pc)

−2

−1

0

1

2

3

4

5

lo
g(
n
?
/p

c−
2
)

Median model

68% CI

99.7% CI

Observations

�0.5 0.0 0.5

log(R/pc)

9

10

11

12

13
�
?

R
[k

m
s�

1
]

�0.5 0.0 0.5

log(R/pc)

9

10

11

12

13

�
?

T
[k

m
s�

1
]

�0.5 0.0 0.5

log(R/pc)

9

10

11

12

13

�
?

L
O

S
[k

m
s�

1
]

Median model

68% CI

99.7% CI

Observations

1.0 1.5 2.0

log(R/”)
1.0 1.5 2.0

log(R/”)
1.0 1.5 2.0

log(R/”)

101 102 103

M• [M�]

10−5

10−4

10−3

10−2

P
ro

b
ab

ili
ty

d
is

tr
ib

u
ti

on

M• < 578 M� 3σ
upper
limit

[Della Croce+ 2023]

Example: dynamical modelling of the globular cluster NGC 104
with the goal of constraining the mass of the central IMBH.

Distribution function moments

The 6d DF f (x, v) can be reduced to more “easy to grasp” quantities:

▶ density ρ(x) =

∫
f (x, v) d3v ,

▶ mean velocity v(x) =
1

ρ(x)

∫
v f (x, v) d3v ,

▶ second moment of velocity v 2
ij (x) =

1

ρ(x)

∫
vi vj f (x, v) d

3v ,

▶ more generally, velocity distribution at a given point

f(v1; x) =
1

ρ(x)

∫
f (x, v) dv2 dv3 (it can be strongly non-Gaussian!).

In most cases, we need f (x, v), but the DF gives us f (J) =⇒
use an action finder to convert from phase-space to action-space.

The combination of a potential Φ(x), action finder J(x, v | Φ) and DF f (J)
is called GalaxyModel.

Distribution function moments

gm = agama.GalaxyModel(pot_mw , df_total)
radii = numpy.linspace(0, 15, 61)
rho , vel , vel2 = gm.moments(

numpy.column_stack ([radii , radii*0, radii *0]),
dens=True , vel=True , vel2=True , separate=True)

ax[0]. plot(radii , rho[:,0], color=’b’, label=’rho ,thin’)
ax[0]. plot(radii , rho[:,1], color=’r’, label=’rho ,thick’)
ax[1]. plot(radii , vel[:,0,1], color=’b’, label=’mean vphi , thin’)
ax[2]. plot(radii , vel2 [: ,0 ,0]**0.5 , color=’b’, label=’sigma_r , thin’)

index of DF component index of velocity dimension: x , y , . . .

0 2 4 6 8 10 12 14

R[kpc]

106

107

108

109

ρ
(R
,z

=
0)

[M
¯
/k

p
c3

]

thin

thick

exp(−R/Rdisk)

0 2 4 6 8 10 12 14

R[kpc]

50

0

50

100

150

200

250

v φ
[k

m
/s

]

thin

thick

circular velocity

0 2 4 6 8 10 12 14

R[kpc]

10

100

20

50

200

σ
R

[k
m
/s

]

thin

thick

exp(−R/Rsigmar)

Distribution functions in velocity (1d projections)

gridv = numpy.linspace (-200, 350)
vdf_vx , vdf_vy , vdf_vz , norm = gm.vdf([8.2, 0, 0],

gridv=gridv , separate=True , dens=True)
frac0 = norm [0] / sum(norm)
frac1 = 1 - frac0
ax[0]. plot(gridv , vdf_vx [0](gridv) * frac0 , label=’f(v_R), thin’)
ax[0]. plot(gridv , vdf_vx [1](gridv) * frac1 , label=’f(v_R), thick’)
ax[0]. plot(gridv , vdf_vy [0](gridv) * frac0 , label=’f(v_phi), thin’)
ax[0]. plot(gridv , vdf_vz [0](gridv) * frac0 , label=’f(v_z), thin’)

index of DF component

200 100 0 100 200

VR [km/s]

10-5

10-4

10-3

10-2

f(
v)

0 100 200 300

−Vφ [km/s]

data

thin

thick

total

200 100 0 100 200

Vz [km/s]

Sampling from a distribution function

One can use a selection function (usually spatial) to restrict the GalaxyModel
to a limited volume, essentially using DF×SF: f

(
J(x, v)

)
× S(x).

sf = agama.SelectionFunction ([8.2, 0, 0], radius =2.0)
gm1 = agama.GalaxyModel(pot_mw , df_total , sf=sf)
posvel , mass = gm.sample (1000000)
ax[0]. scatter(posvel [:10000 ,0] , posvel [:10000 ,1]) # x,y
ax[0]. scatter(posvel [:10000 ,0] , posvel [:10000 ,2]) # x,z

Or sample from the entire model (e.g., to create an N-body representation of it)...

15 10 5 0 5

x [kpc]

10

5

0

5

10

y
[k

p
c]

APOGEE

10 9 8 7 6

x [kpc]

2

1

0

1

2
y

[k
p
c]

10 9 8 7 6

x [kpc]

2

1

0

1

2

z
[k

p
c]

Construction of self-consistent equilibrium models

Distribution function of stars f (x, v, t)
satisfies [sometimes] the collisionless Boltzmann equation:

∂f (x, v, t)

∂t
+ v

∂f (x, v, t)

∂x
− ∂Φ(x, t)

∂x

∂f (x, v, t)

∂v
= 0.

Potential ⇔ mass distribution

not measured directly on human timescales

In order to infer anything about the potential from a time-dependent DF,
need to make further assumptions about the initial state of the system, e.g.,
that the stars belong to a single stream or were perturbed from an equilibrium
configuration in a specific way, etc.

Construction of self-consistent equilibrium models

Distribution function of stars f (x, v, t)
satisfies [sometimes] the collisionless Boltzmann equation:

∂f (x, v, t)

∂t
+

v
∂f (x, v

, t

)

∂x
− ∂Φ(x

, t

)

∂x

∂f (x, v

, t

)

∂v
= 0.

Steady-state assumption =⇒ Jeans theorem:

f (x, v) = f
(
I(x, v; Φ)

)

integrals of motion (≤ 3D?), e.g., I = {E , L, . . . }

3D
(want to infer)

3D – 6D
(observed)

Construction of self-consistent equilibrium models

Definition: a stellar system described by a time-independent DF f
(
I(x, v; Φ)

)
and potential Φ(x), which are related by the Poisson equation:

∇2Φ(x) = 4π G ρ(x), where ρ(x) =

∫∫∫
d3v f

(
I(x, v)

)
.

Applications:

▶ inference on gravitational potential from stellar kinematics
(so-called dynamical modelling)

▶ creation of initial conditions for isolated galaxy simulations

Methods: (non-exhaustive list)

▶ DF1: Φ + ρ =⇒ f (Eddington–Ossipkov–Merritt–Cuddeford inversion)
only in spherical systems; QuasiSpherical DF with two free params β0, ra

▶ DF2: f =⇒ Φ + ρ (iterative method)

▶ orbit-superposition: Φ + ρ+ fi=1..N =⇒ wi (Schwarzschild method)

Iterative construction of DF-based self-consistent models

1. assume f (I) and
an initial guess for Φ

2. repeat
establish I(x, v; Φ)

compute ρ(x) =∫∫∫
d3v f

(
I(x, v)

)
update Φ(x) from
the Poisson equation

converged?
no yes

3. enjoy!

scm_params = d i c t (
rminSph =0.01, rmaxSph =100., sizeRadialSph =25, lmaxAngularSph =4)

df = agama.DistributionFunction (** df_params)
comp = agama.Component(df=df, disklike=False , ** scm_params)
scm = agama.SelfConsistentModel(components =[comp], ** scm_params)
scm.potential = init_potential
f o r i i n range (5):

scm.iterate ()
comp.density.export(’final_density.ini’)
scm.potential.export(’final_potential.ini’)

Orbit-superposition method for self-consistent models

Introduced by Schwarzschild (1979) as a practical approach
for constructing self-consistent triaxial models with prescribed ρ(x) ⇔ Φ(x).

To invert the equation ρ(x) =

∫∫∫
f
(
I (x, v ; Φ)

)
d3v,

discretize both the density profile and the distribution function:

ρ(x) =⇒ cells of a spatial grid;

mass of each cell is Mc =

∫∫∫
x∈Vc

ρ(x) d3x ;

f (I) =⇒ collection of orbits with unknown weights:

f (I) =
Norb∑
k=1

wk δ(I − Ik)

integrals of motion

each orbit is a delta-function in the space of integrals of motion

adjustable weight of each orbit [to be determined]

Orbit-superposition method for self-consistent models

orbits in the model target density

discretized orbit density
(fraction of time tkc that k-th orbit spends in c-th cell)

discretized density
(mass Mc in grid cells)

For each c-th cell we require
∑

k wk tkc = Mc , where wk ≥ 0 is orbit weight

system of linear equations with nonnegativity constraints ⇒ optimization problem

Orbit-superposition method: example
dens = agama.Density(type=’Spheroid ’, axisRatioZ =0.5)
pot = agama.Potential(type=’Multipole ’, density=dens)
target = agama.Target(type=’DensityClassicLinear ’,

gridr=numpy.logspace (-1.5, 2), stripsPerPane =2)

numOrbits = 10**4
ic,_ = dens.sample(numOrbits , potential=pot)

matrix , trajs = agama.orbit(potential=pot , ic=ic,
time =100* pot.Tcirc(ic), dtype=object , targets =[target])

rhs = target(dens)
weights = agama.solveOpt(matrix=matrix.T, rhs=rhs)

nbody = 10**5
_,(xv,m) = agama.sampleOrbitLibrary(

nbody , trajs , weights)
plt.scatter(xv[:,0], xv[:,2])

100 50 0 50 100
X

100

50

0

50

100

Z

prepare initial conditions for the orbit library

compute the orbits and their contribution to the density

solve the optimization problem to get the orbit weights

create N-body snapshot from recorded trajectories with weights

(omitting some non-essential but useful steps)

Example of DF- and orbit-based dynamical models
Model of an edge-on S0 galaxy FCC 170 constrained by MUSE IFU kinematics

20

10

0

10

20

 y
 [

a
rc

se
c]

Observations Schwarzschild model DF model

1.6

2.4

3.2

4.0

4.8

lo
g

10
(Σ

)

20

10

0

10

20

 y
 [

a
rc

se
c]

180
120
60

0
60
120
180

v 0
[k

m
/s

]

20

10

0

10

20

 y
 [

a
rc

se
c]

0
30
60
90
120
150
180

σ
[k

m
/s

]

20

10

0

10

20

 y
 [

a
rc

se
c]

0.16

0.08

0.00

0.08

0.16

h
3

60 40 20 0 20 40
x [arcsec]

20

10

0

10

20

 y
 [

a
rc

se
c]

60 40 20 0 20 40
x [arcsec]

60 40 20 0 20 40
x [arcsec]

0.16

0.08

0.00

0.08

0.16

h
4

[Galán-de Anta+ 2023]

Various mathematical methods

▶ spline interpolation (B-spline/cubic/quintic, 1d/2d/3d);

▶ penalized (i.e., with automatic optimal smoothing) spline fitting and density
estimation;

▶ N-dimensional integration (using cubature or cuba libraries);

▶ drawing uniform-weight samples from an arbitrary N-dim probability function
(rejection sampling with adaptive domain refinement).

binned mean

spline fit

simple histogram

spline density estimate

Other features, caveats and limitations

▶ Agama is not a general-purpose N-body simulation code, but it can be
used in this role to some extent, utilizing orbit integration coupled with
the Multipole potential expansion (aka BFE).

▶ It can create initial conditions for galaxy simulations, provide external
potential for several simulation codes (Nemo / GyrfalcON, Amuse,

Gadget4, Arepo), and assist in the analysis (e.g., extract potential from

snapshots, integrate orbits, etc.)

▶ User-defined Python functions can serve as density, potential, DF and
selection functions along with built-in C++ models, but are [much] less
efficient; recommended approach is to approximate density or potential
with C++-native expansions. A possible future development is to compile
them as Cython code and use natively from the C++ core.

▶ No universal support for differentiable programming (Jax autodiff does not

propagate into C++), but some functions can provide analytic derivatives
(orbit integration, DFs, and in the future action-angle transformations).

Software for galactic dynamics Galpy Gala Agama
[Bovy 2015] [Price-Whelan 2017] [Vasiliev 2019]

density and potential profiles:
collection of analytic models + + +
solution of the Poisson equation for + + +
an arbitrary ρ(r) or an N-body snapshot

numerical integration of orbits + + +

conversion between position/velocity and
action/angle variables

+ + +

distribution functions and their moments + – +

construction of equilibrium models – – +

modelling of tidal streams + + +

N-body simulations with BFE – – +

integration with Astropy + + –

language Python, C Cython C++, Python

Agama potentials can be used in Gala & Galpy, although not most efficiently

Summary

Agama is a versatile toolbox for stellar dynamics catering to many needs:

▶ Extensive collection of gravitational potential models

(analytic profiles, azimuthal- and spherical-harmonic expansions)

constructed from smooth density profiles or N-body snapshots;

▶ Numerical orbit integration;

▶ Conversion to/from action/angle variables;

▶ Self-consistent multicomponent models with action-based DFs;

▶ Schwarzschild orbit-superposition models;

▶ Generation of initial conditions for N-body simulations;

▶ Various math tools: spline-based interpolation, fitting and density estimation,

multidimensional sampling;

▶ Efficient and carefully designed C++ implementation, examples,

Python and Fortran interfaces, plugins for Galpy, Gala, NEMO, AMUSE.

https://github.com/GalacticDynamics-Oxford/Agama

https://github.com/GalacticDynamics-Oxford/Agama

