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Observational and theoretical context Milky Way rotation curve
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Agama software package
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several dozen tests and example
programs in C++ and Python;

detailed documentation (~140 pages);
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Structure of the Agama library [Some mathsy stuff (C & Fortran)
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(GSL (C) & Eigen (C++) math Iibs] [ CVXOPT quad. opt. solver (Python) |

C++4 core — shared library agama.so

computationally heavy parts (potentials, actions, orbit integration, etc.);
built-in density, potential and DF models

~

Python interface (C & C++)

vectorization (operation on arrays);
OpenMP parallelization
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external gravity C, Fortran
source interfaces
for N-body codes interfaces
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additional Python routines

math & coord utility functions;
Forstand orbit-superposition code;
interfaces for GALPY and GALA

\( NEMO, AMUSE, Gadget4, Arepo‘

GALPY and GALA
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AGAMA potentials can be used in
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user scripts in Python (including custom density, potential & DF models)
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Structure of the Agama library
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Gravitational potential

Task: given the density profile p(x), determine the potential ®(x)
from the Poisson equation: V2® = 47 G p.

Example 1: spherical Plummer model
3M GM
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o(r) 4m@® (1+ r?/a?)5/2 (r) Vr?+ a
Example 2: triaxial Hernquist model
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It gets very complicated very quickly!



Gravitational potential
Commonly used analytic potential—density pairs: Plummer, NFW,
MiyamotoNagai, Dehnen, Ferrers ...

If one needs more flexibility, there are three general-purpose Poisson solvers:

0. Direct mtegratlon e
/// 2 p(x e (impractical)
“=x]

1. Azimuthal-harmonic expansion ( ylSpllne)

O(R,z,0) = Y (R z)e™.

m=—0o0

2. Spherical-harmonic expansion (Multipole): interpolated functions

®(r,0,¢) = ZZcb,mr ™0, $).
=0 m=—I
3. BasisSet expansion (a.k.a. self con5|stent field method of Hernquist&Ostriker 1992):

(r,0,¢) = ZZ Z D i An(r) Y(6, 6).

n=0 /=0 m=—/



Gravitational potential

Workflow for the Multipole potential expansion:

original p(r, 0, ¢) &(r,0,0)
maX Zmax

approximate Z Z pem(r) Y, (0, 0) Z Z &on(r) Y70, 0)
(=0 m=—t (=0 m=—t

solve Poisson eqn for each term
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Multipole and BasisSet potentials are well-suited for extended but not too flattened profiles;
CylSpline is ideal for disky profiles, but has a finite spatial extent and doesn't like cusps.



Composite and time-dependent potentials

Potentials can be added, scaled or interpolated with time, rotated (e.g., bar
or spiral arms), shifted along a time-dependent trajectory, etc.

Example: potentials of Milky Way and LMC extracted from an N-body simulation.

t =—1.5 Gyr t = 0.0 Gyr

t = —0.5 Gyr



Gravitational potential: example 1
User-defined density model: a boxy bar  p(x,y,z) = po exp ( — s*/"),
where s = [(x/a) + (y/b)* + (z/c)¥] YK is the generalized ellipsoidal
radius (an ordinary ellipsoid has k = 2), and n is the Einasto index.

def dens_bar(xyz):
X,y,z = abs(xyz).T
s = ((x/a)*xxk + (y/b)*x*k + (z/c)*xk)*x*x(1./k)
return rho@ *x numpy.exp(-s*x(1./n))

pot_bar = agama.Potential (type=’Multipole’, density=dens_bar,
Imax=20, mmax=10, symmetry=’triaxial’)
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Gravitational potential: example 2

One may construct these potential expansions either from an analytic
density profile (including any user-defined Python function for p or ®)
or from an N-body snapshot, specifying the desired level of symmetry.

pot_nbody = agama.Potential (type="CylSpline’,
particles=(pos,mass), symmetry=’bisymmetric’)

10 5 0 -5 -10

original snapshot triaxial bisymmetric



Numerical integration of orbits

One of the most common tasks in galactic dynamics.
Examples: orbits in the MW bar; test-particle simulations of a tidal stream
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Numerical integration of orbits: example

agama.setUnits(length=1, velocity=1, mass=1)
#Note: distances are in kpc, velocities in km/s = time in kpc/(km/s)=0.978 Gyr
pot_mw = agama.Potential(’McMillanl17.ini’)
time, traj = agama.orbit(potential=pot_mw,
ic=[-8.2, 0, 0.02, 13, 245, 8], time=-2.0, trajsize=1001)
R = (trajl[:,0]1**2 + trajl:,1]1*x*2)*x*x0.5

z = trajl:,2]
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see tutorial_potential_orbits.ipynb for much more detail



Action—angle variables

Most orbits in axisymmetric potentials S
e

look like "rectangular tori” with N
three parameters defining the shape: '
Jy = L, = Ry Veire(Ry) determines
the overall size of the orbit (“guiding radius” R;);
Jr determines the extent of radial oscillations;

J, does the same for vertical oscillations.

Corresponding phase angles 0, g , determine
the location on the orbit.

and are computed in the Stackel
approximation [Binney 2012],
using spheroidal coordinates for x;.
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Actions are defined as J; = % § pidx;,

Inverse transformation {J,0} = {x,v} )
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Action—angle variables: example

af = agama.ActionFinder (pot_mw)

#posvel is an array of 6d phase-space coords in Cartesian frame

actions, angles = af(posvel, angles=True, frequencies=False)
J_R, J_z, J_phi = actions.T

theta_R, theta_z, theta_phi = angles.T
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Gaia sample of nearby stars (D < 100 pc)

other applications: clustering in the integrals space; study of resonances, ...



Distribution functions

DF f(x, v) offers a complete description of a stellar population.
Fundamental principle of stellar dynamics (Jeans's theorem):

in a steady state, DF must be a function of integrals of motion f(I(x, v, <D))
and it is often convenient to use actions J as integrals Z.

Two ways of constructing a DF in AGAMA:

» Using the Cuddeford—Eddington [anisotropic] inversion formula
to obtain the DF of the form f(E, L) = f(E + L2/(2r2)) L=2%
corresponding to a given density p(r) and potential ®(r):
df_gs = agama.DistributionFunction(type='QuasiSpherical’,
density=dens, potential=pot, beta0=0.3, r_a=10)
This DF is internally converted to the form f(J).

» Using an ad hoc expression for the DF f(J), either one of built-in
models (DoublePowerlLaw, QuasiIsothermal, Exponential) or a

user-defined Python function:
df _dp = agama.DistributionFunction(type=’DoublePowerLaw’,
Jo=J0, slopeIn=Gamma, slopeQut=Beta, mass=1)



Distribution function applications: classification

df _thin =

potential=pot_mw,

sigmaro=50,
df_thick =

potential=pot_mw,

sigmar0=150,
df _total = agama.DistributionFunction(df_thin,

prob_thick df_thick(actions) / df_total(actions)

200

mass=0.7,
Rsigmar=10)
agama.DistributionFunction(type="Quasilsothermal’,
mass=0.3, Hdisk=0.40,

Rsigmar=10)
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Distribution function applications: potential inference

DF is a probability distribution for finding a star with a given position and
velocity, and it also depends on the potential ® via the integrals of motion Z.

log(n,/pc™?)

By maximising the likelihood of the observed dataset, one can determine the
best-fit parameters «, 3 of the stellar system, including its mass distribution.

InL = Z mlnf< x,v; ®(x; a)); ﬁ)

Example: dynamical modelling of the globular cluster NGC 104
with the goal of constraining the mass of the central IMBH.

—— Median model
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[Della Croce+ 2023]
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Distribution function moments

The 6d DF f(x,v) can be reduced to more “easy to grasp” quantities:
» density p(x) = /f(x,v) d3v,

1
» mean velocity v(x) = —/vf X,V d3v,
()= [ ¥Fxw)

— 1
> second moment of velocity v7(x) = o) / v; vj f(x,v) dv,
» more generally, velocity distribution at a given point
f(vi; x) = ) f(x,v)dvadvs (it can be strongly non-Gaussian!).
p(x

In most cases, we need f(x,v), but the DF gives us f(J) =
use an action finder to convert from phase-space to action-space.

The combination of a potential ®(x), action finder J(x,v | ®) and DF f(J)
is called GalaxyModel.



Distribution function moments

gm = agama.GalaxyModel (pot_mw, df_total)
radii = numpy.linspace(0, 15, 61)
rho, vel, vel2 = gm.moments(
numpy.column_stack([radii, radii*@, radiixo]),
dens=True, vel=True, vel2=True, separate=True)
ax[@].plot(radii, rhol[:,0], color=’b’, label=’rho,thin’)
ax[0].plot(radii, rhol[:,1], color='r’, label=’rho,thick’)
ax[1].plot(radii, vel[:,0,1], color="b’, label="mean vphi, thin’)
ax[2].plot(radii, vel2[:,0,0]1**0.5, color="b’, label=’sigma_r, thin’)
index of DF component 7 " index of velocity dimension: x,y, ...
10° . 200 ——————————
"y 100
i@los 3 1 o
s £ o
TLW F — thin = sof  — thin i — thin
< — thick ol  — thick | 20f — thick
< - - exp(—R/Rdisk) - - circular velocity - - exp(—R/Rsigmar)
0~} 5o ] ol
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Rlkpc] Rlkpc] R[kpc]



Distribution functions in velocity (1d projections)

gridv = numpy.linspace(-200, 350)

vdf_vx, vdf_vy, vdf_vz, norm = gm.vdf([8.2, 0, 0],
gridv=gridv, separate=True, dens=True)

frac@ = norm[@] / sum(norm)

fracl = 1 - fraco

ax[@0].plot(gridv, vdf_vx[@](gridv)

ax[0].plot(gridv, vdf_vx[1](gridv)

ax[@0].plot(gridv, vdf_vy[@l(gridv)

ax[0].plot(gridv, vdf_vz[@](gridv)

index of DF component _

| — data

— thin
— thick

3 total

fraco, label="f(v_R), thin’)
fracl, label="f(v_R), thick”)
frace, label=’f(v_phi), thin’)
fraco, label="f(v_z), thin’)
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Sampling from a distribution function

One can use a selection function (usually spatial) to restrict the GalaxyModel
to a limited volume, essentially using DFxSF: £ (J(x,v)) x S(x).

sf = agama.SelectionFunction([8.2, @, 0], radius=2.0)
gml = agama.GalaxyModel (pot_mw, df_total, sf=sf)

posvel, mass = gm.sample (1000000)
ax[0].scatter(posvel[:10000,0], posvel[:10000,1]) # x,vy
ax[0].scatter(posvel[:10000,0], posvel[:10000,2]) # x,z

Or sample from the entire model (e.g., to create an N-body representation of it)...

10
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Construction of self-consistent equilibrium|models

Distribution function of stars f(x, v, t)
satisfies [sometimes] the collisionless Boltzmann equation:

Of (x, v, t) Ly Of(x,v,t)  0P(x,t) Of(x,v, t)

ot Ox Ox ov =0

Potential < mass distribution

not measured directly on human timescales

In order to infer anything about the potential from a time-dependent DF,
need to make further assumptions about the initial state of the system, e.g.,
that the stars belong to a single stream or were perturbed from an equilibrium

configuration in a specific way, etc.



Construction of self—consistent[equilibrium] models

Distribution function of stars f(x, v, t)
satisfies [sometimes] the collisionless Boltzmann equation:
of(x,v ) 0®(x ) of(x,v )

v Ox T Ox ov =0

\

. 3D
Steady-state assumption => Jeans theorem: /(want to infer)

Z(x,v; d)
3D - 6D-/ \
(observed)

integrals of motion (< 3D7?), eg., Z={E,L,...}




Construction of self-consistent equilibrium models

Definition: a stellar system described by a time-independent DF f(I(x,v; CD))
and potential ®(x), which are related by the Poisson equation:

V20(x) — 47 G p(x), where p(x) = / / / & F(Z(x,v)).

Applications:
» inference on gravitational potential from stellar kinematics
(so-called dynamical modelling)
» creation of initial conditions for isolated galaxy simulations

Methods:  (non-exhaustive list)
» DF;: &+ p = f (Eddington—Ossipkov—Merritt—Cuddeford inversion)
only in spherical systems; QuasiSpherical DF with two free params [y, r;

» DF,: f = &+ p (iterative method)
» orbit-superposition: ® + p+ iy y => w; (Schwarzschild method)



Iterative construction of DF-based self-consistent models

1. assume f(Z) and _—— 2. repeat
an initial guess for @ establish Z(x, v; ®)

compute p(x) =

[ff BT O \

ov!
update ®(x) from 3. enjoy!
the Poisson equation
scm_params = dict(
rminSph=0.01, rmaxSph=100., sizeRadialSph=25, 1lmaxAngularSph=4)
df = agama.DistributionFunction (**xdf_params)

comp = agama.Component (df=df, disklike=False, *xscm_params)
scm = agama.SelfConsistentModel (components=[comp], **scm_params)
scm.potential = init_potential

for i in range(5):

scm.iterate ()
comp.density.export(’final_density.ini’)
scm.potential.export(’final_potential.ini’)



Orbit-superposition method for self-consistent models

Introduced by Schwarzschild (1979) as a practical approach
for constructing self-consistent triaxial models with prescribed p(x) < ®(x).

mtegrals of motion

To invert the equation p(x /// (x,v; ) ) d3v,

discretize both the density profile and the distribution function:

p(x) = cells of a spatial grid;

mass of each cell is M, = /// p(x) d>x;

f(Z) = collection of orbits with unknown weights:

orb

Z Wi I Ik

& each orbit is a delta-function in the space of integrals of motion
adjustable weight of each orbit [to be determined]



Orbit-superposition method for self-consistent models

orbits in the model target density

discretized orbit density discretized density
(fraction of time tj. that k-th orbit spends in c-th cell) (mass V. in grid cells)

For each c-th cell we require >, wy ti,c = M., where w; > 0 is orbit weight

system of linear equations with nonnegativity constraints =- optimization problem



Orbit-superposition method: example

dens = agama.Density(type='Spheroid’, axisRatioZ=0.5)

pot = agama.Potential (type=’Multipole’, density=dens)

target = agama.Target(type=’DensityClassiclLinear’,
gridr=numpy.logspace(-1.5, 2), stripsPerPane=2)

# prepare initial conditions for the orbit library

numOrbits = 10*%*4

ic,_ = dens.sample(numOrbits, potential=pot)

# compute the orbits and their contribution to the density

matrix, trajs = agama.orbit(potential=pot, ic=ic,
time=100*pot.Tcirc(ic), dtype=object, targets=[target])

# solve the optimization problem to get the orbit weights

rhs = target(dens)

weights = agama.solveOpt(matrix=matrix.T, rhs=rhs)

# create N-body snapshot from recorded trajectories with We/ghts———

nbody = 10%%5

_,(xv,m) = agama.sampleOrbitLibrary/(
nbody, trajs, weights)

plt.scatter(xv[:,0], xv[:,2])

# (omitting some non-essential but useful steps)




Example of DF- and orbit-based dynamical models
Model of an edge-on SO galaxy FCC 170 constrained by MUSE IFU kinematics

Observations Schwarzschild model DF model
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Various mathematical methods

» spline interpolation (B-spline/cubic/quintic, 1d/2d/3d);

» penalized (i.e., with automatic optimal smoothing) spline fitting and density
estimation;

» N-dimensional integration (using cubature or cuba libraries);

» drawing uniform-weight samples from an arbitrary N-dim probability function
(rejection sampling with adaptive domain refinement).

T T T T T T
—— binned mean — simple histogram
— spline density estimate

_— spline fig: -




Other features, caveats and limitations

» AGAMA is not a general-purpose N-body simulation code, but it can be
used in this role to some extent, utilizing orbit integration coupled with
the Multipole potential expansion (aka BFE).

» It can create initial conditions for galaxy simulations, provide external
potential for several simulation codes (NEMO / GYRFALCON, AMUSE,
GADGET4, AREPO), and assist in the analysis (e.g., extract potential from
snapshots, integrate orbits, etc.)

» User-defined Python functions can serve as density, potential, DF and
selection functions along with built-in C++ models, but are [much] less
efficient; recommended approach is to approximate density or potential
with C++-native expansions. A possible future development is to compile
them as Cython code and use natively from the C++ core.

» No universal support for differentiable programming (Jax autodiff does not
propagate into C++), but some functions can provide analytic derivatives
(orbit integration, DFs, and in the future action-angle transformations).



Software for galactic dynamics  GaLpy GALA AcaMA
[Bovy 2015] [Price-Whelan 2017] [Vasiliev 2019]
density and potential profiles:

collection of analytic models + + +
solution of the Poisson equation for + + +
an arbitrary p(r) or an N-body snapshot
numerical integration of orbits + + +
conversion between position /velocity and + + +
action/angle variables
distribution functions and their moments + - +
construction of equilibrium models - - +
modelling of tidal streams + + +
N-body simulations with BFE - - +
integration with ASTROPY + + -
language Python, C Cython C++, Python

AGAMA potentials can be used in GALA & GALPY, although not most efficiently



Summary
AGAMA is a versatile toolbox for stellar dynamics catering to many needs:

» Extensive collection of gravitational potential models
(analytic profiles, azimuthal- and spherical-harmonic expansions)
constructed from smooth density profiles or N-body snapshots;

Numerical orbit integration;

Conversion to/from action/angle variables;

Self-consistent multicomponent models with action-based DFs;
Schwarzschild orbit-superposition models;

Generation of initial conditions for N-body simulations;

vVvvyVvyyyewy

Various math tools: spline-based interpolation, fitting and density estimation,

multidimensional sampling;

v

Efficient and carefully designed C++ implementation, examples,
Python and Fortran interfaces, plugins for Galpy, Gala, NEMO, AMUSE.

https://github.com/GalacticDynamics-Oxford/Agama


https://github.com/GalacticDynamics-Oxford/Agama

