Chaos and secular evolution
of triaxial elliptical galaxies

Eugene Vasiliev (LPIl, Moscow & RIT)
E.Athanassoula (Lab. astrophys. Marseille)

RIT astro seminar, 24 feb 2011



Plan of the talk

Types of orbits in a triaxial potential
Resonant and sticky chaotic orbits

Construction of equilibrium triaxial galaxy models
by Schwarzschild method

Role of chaos in the change of galaxy shape



Types of orbits in triaxial potentials

SAT (short axis tube)

Inan integrable potential
these are the only
possible orbit types

LAT (long axis tube)




Types of orbits in triaxial potentials

SAT (short axis tube)

resonant orbit

LAT (long axis tube)




Resonant and thin orbits

Wy, Wy, w, — leading frequencies of a regular orbit

Resonant or thin orbit: nyw; + nows + nyws = 0.
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These orbits have associated regions in phase space,
and boundary layers are occupied by "sticky’ chaotic orbits



Definition of chaos

In a system with N degrees of freedom
a regular orbit has N integrals of motion,
a chaotic one has less than N.

But the integrals are rarely known in explicit form!

For time-independent potential — energy;

Fors ' metric — a entum;
For axi metric — z componéentofangular momentum

—

For triaxial - ......



No well-defined transition to chaos!




Frequency map as an instrument of
studying the structure of phase space
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Construction of equilibrium models
by Schwarzschild’s orbit superposition method

« Take a specified density profile p(r) / potential W¥(r)
« Divide space into N, cells with masses m,

» Integrate N, orbits in given potential (N, »N,)
and calculate the fraction of time f_,
that o-th orbit spends in c-th cell

* Solve optimization problem:

find orbit weights w_ >0 so that
N

Zwotoc — mc C = 1"NC

1=1




Features of Schwarzschild method

* Non-uniqueness of solution (if it exists at all)

* No guarantee of stability
(only self-consistent equilibrium is assured)

 If we include chaotic orbits which may change their shape
In time, then the solution may turn out to be non-stationary

To address these issues:

« Study the influence of chaotic orbits on the evolution of
model shape

« Test the stability by evolving N-body representation of
Schwarzschild model



Triaxial models considered

We consider two variants of triaxial Dehnen model, with
density profile

_ B-1M 1
pr) = drabc  m7 (1 + m)*—

(1)

m = [(z/a)?® + (y/b)* + (z/c)?]*/?|is the elliptic radius. We

adopt dimensionless units in which M =1, a =1, G =1
(which also fixes the time unit), and choose the axial ratios
b/a = /5/8, ¢/a = 1/2, which corresponds to triaxiality
parameter T = (a® — b®)/(a® — ¢?) equal to 1/2 (maximal

triaxiality). For the cusp slope v we choose two values:|y = 1

(weak cusp) and|y = 2|(strong cusp).




Chaotic diffusion and the change of model shape

Chaotic orbits may change the overall shape of density profile

because if an orbit initially being sticky may eventually escape and become
more wildly chaotic, and therefore tend to fill more uniformly the equipotential
surface (which is rounder than equidensity surface).

The opposite process tends to be
suppressed because initial
(self-consistent) distribution of orbits

did not contain much wildly chaotic ones.
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To see whether this process may be
important on a Hubble timescale,
we look at the shape evolution of chaotic orbits
in a fixed potential ;

Then we look how do they behave in a live N-body simulation



Chaotic diffusion and the change of model shape
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Figure 1. Shape change for chaotic orbits during T = 1000 T}, ,, .
Each pair of error bars shows the spread in distribution of -
axis flattening (l:x /(Iex 4+ Tyy 4+ 1:2), where Id;j are the inertia
tensor components), for initial (left, red) and final (right. green)
10073, intervals of time, averaged over the ensemble of chaotic
({Aw = lﬂ_g] orbits in a given energy bin. The horizontal axis
corresponds to 10 bins each of which contains 10% of the total
mass, with the innermost particles in the left bin).
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Top panel: v = 1, bottom: 4 = 2 models. The decrease in the
average value in each pair means that orbits become rounder (y-
and z-axis components increase at the expense of r-axis compo-
nent). It is evident that in the weak-cusp case only the chaotic
orbits in the outer shells do change shape systematically to be-
come rounder, while in the strong-cusp case this tendency exists
for most of the radial shells.



Phase space of weak-cusp model

Initial segment:

(4,-1,-2) thin orbit

Final segment:

Many resonant orbit families; most chaotic orbits
are associated with resonances and are "sticky’

6:7:8 resonance




Phase space of strong-cusp model

Initial segment:

flattened in x direction
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Final segment:

Almost all non-tube orbits are chaotic,

S _ almost round
often “wildly chaotic’




Stability of weak-cusp model (y=1)

Radially anisotropic model

Typical stable model is subject to rapid onset of
radial-orbit instability
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Evolution of strong-cusp model (y=2)

N-body system

Orbits in fixed potential
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Conclusions

Long-term (secular) evolution of galaxy shape may be caused by
chaotic diffusion of orbits.

It drives galaxies towards more spherical, or axisymmetric shape.

Its rate and outcome depend on the phase space structure of potential:
for the weak-cusp model it has complicated network of resonant orbits,
which slow down chaotic diffusion;

for the strong-cusp case there are no major resonances, and

most chaotic orbits eventually become rounder.

N-body evolution of model shape agrees well with the results of
chaotic diffusion in fixed potential.



