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Synopsis

» Motivation

» Barred galaxies are ubiquitous (~ 50% of disk galaxies)
» Complex morphology and kinematics
» Interplay between bars and supermassive black holes

Modelling approaches for barred galaxies
Schwarzschild’'s method in brief
Results for barred galaxies and supermassive black holes

Open questions
» Deprojection uncertainties
P Intrinsic degeneracies in potential determination
P Statistical challenges in non-parametric modelling



Modelling approaches for barred galaxies: response models

[Contopoulos & Grosbgl 1986, 1988; Patsis+ 1991; Kaufmann & Contopoulos 1996]
2d response models:

assume parameters for potential, pattern speed, etc.
construct the network of periodic orbits

populate nearby orbits and compute their surface density
compare morphological features with observations
vary the parameters until a good match is found
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Modelling approaches for barred galaxies: made-to-measure
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Introduced by Syer & Tremaine 1996,

grown up and flourished in Ortwin Gerhard's group
[Bissantz+ 2004, de Lorentzi+ 2007, Portail+ 2015; Blafia+ 2019],
several other implementations exist [Dehnen 2009;
Long & Mao 2012; Hunt & Kawata 2013; Malvido & Sellwood 2015]

Idea: evolve an N-body model while adjusting
particle weights to match the observables
(density and kinematics)
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observed galaxy (M31) M2M model [Blafia+ 2019]



Modelling approaches for barred galaxies: orbit superposition

Introduced by Martin Schwarzschild (1979) in a theoretical context;
theoretical study of kinematics of 2d barred galaxies [Pfenniger 1984, 1985];
application to MW bar [Zhao 1996: Hafner+ 2000; Wang+ 2012]:

density taken from deprojected COBE star counts; kinematics fitted to

a collection of observations (BRAVA survey, vios and PM in Baade's window, etc.);
other constraints: microlensing depth, gas terminal velocities.
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Modelling approaches for barred galaxies: orbit superposition

Schwarzschild Pfenniger




Schwarzschild’s orbit-superposition method: basics

Introduced by Schwarzschild (1979) as a practical approach
for constructing self-consistent triaxial models with prescribed p(x) < ®(x).

mtegrals of motion

To invert the equation p(x /// I[x v | ®]) dv,

discretize both the density profile and the distribution function:

p(x) = cells of a spatial grid; mass of each cell is M. = /// p(x) d>x;

xe Ve

f(Z) = collection of orbits with unknown weights [to be determined|:

orb

Z Wi 0(Z — Iy
& each orbit is a delta-function in the space of integrals of motion
adjustable weight of each orbit



Schwarzschild’s orbit-superposition method: self-consistency

orbits in the model target density

discretized orbit density discretized density
(fraction of time t). that k-th orbit spends in c-th cell) (mass V. in grid cells)

For each c-th cell we require >, wy ti,c = M., where wy, > 0 is orbit weight



Schwarzschild’s orbit-superposition method: kinematics

orbits in the model
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Schwarzschild’s orbit-superposition method: kinematics
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Gauss—Hermite parametrization of LOSVDs [van der Marel & Franx 1993; Gerhard 1993]



Schwarzschild’s orbit-superposition method: fitting procedure
» Assume some potential ®(x)
(e.g., from the deprojected luminosity profile plus parametric DM halo or SMBH)

» Construct the orbit library in this potential:
for each k-th orbit, store its contribution to the discretized density profile

tie, € = 1..Nee and to the kinematic observables wy,, n = 1..Nyps

» Solve the constrained optimization problem to find orbit weights w;:

Nobs Norb 2
Ce _1 Wy Ugp — U
minimize x> + S = E 2 T ]+ S({wm})
n=1 n
subject to w, >0, k =1..Nyp,
observational constraints
Norb
E Wi tie = M., c= 1. N their uncertainties
k=1 T density constraints (cell masses)

> Repeat for different choices of potential and find the one that has lowest )2



Schwarzschild’s orbit-superposition method: implementations
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Several commonly used independent implementations of the method:

theoretical studies in triaxial geometry: Schwarzschild 1979, 1993; Pfenniger 1984;
Statler 1987; Merritt & Fridman 1996; Siopis & Kandrup 2000; Vasiliev 2013

spherical codes: Richstone & Tremaine 1984; Rix+ 1997: Jalali & Tremaine 2010;
Breddels & Helmi 2013; Kowalczyk+ 2017

axisymmetric: “Leiden” [van der Marel, Cretton, Cappellari, ...— since 1998]
axisymmetric: “Nukers” [Gebhardt, Richstone, Kormendy, . ..— since 2000]
axisymmetric: “MasMod" [Valluri, Merritt, Emsellem — since 2004]

triaxial /Milky Way bar: Zhao, Wang, Mao 1996, 2012

triaxial: van den Bosch, van de Ven, de Zeeuw, Zhu, ...-since 2008 = “Dynamite”

triaxial: “Forstand” [Vasiliev & Valluri 2020]



New implementation of Schwarzschild’s method: highlights

» arbitrary geometry (from spherical to triaxial),
arbitrary density profiles (= flexible Poisson solver)

» rotating frame (= triaxial bars)
» random sampling of initial conditions for orbits

» several choices for 3d intrinsic density constraints

(incl. piecewise-linear shape elements)

> representation of the 3d observational datacube
(X, Y, Vios) in terms of B-splines

» either Gauss—Hermite moments or a full LOSVD fitting

» very efficient quadratic optimization solver

» Publicly available as part of AGAMA library for dynamical modelling
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New implementation of Schwarzschild’s method: highlights

» arbitrary geometry (from spherical to triaxial),

arbitrary density profiles (= flexible Poisson solver) /
» rotating frame (= triaxial bars) / .
» random sampling of initial conditions for orbits

» several choices for 3d intrinsic density constraints

(incl. piecewise-linear shape elements)

> representation of the 3d observational datacube
(X, Y, Vios) in terms of B-splines \/' H\

b 3

» either Gauss—Hermite moments or a full LOSVD fitting

Kazimir Malevich,

.. . . . “Suprematism”
» very efficient quadratic optimization solver .

» Publicly available as part of AGAMA library for dynamical modelling



Recovery of bar pattern speed in Schwarzschild models
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Mock data from a barred N-body model of the Milky Way [Fragkoudi+ 2017]

Here assumed a known 3d shape of the density profile,
varied two parameters: pattern speed 2 and mass-to-light ratio T



Recovery of bar pattern speed in Schwarzschild models
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Recovery of bar pattern speed in Schwarzschild models
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5 bar orientations, 5 different realizations of noise in each case;
the correct pattern speed is recovered to within 10%, even in “symmetric” cases,

which are not suitable for the Tremaine—-Weinberg method



Recovery of internal kinematics in Schwarzschild models

Distribution of orbits in radius vs. “circularity” space
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Recovery of black hole masses in Schwarzschild models
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Mock data: Milky Way-size axisymmetric disk galaxy with or without a bulge, and a
central black hole with mass M, = 103 Mgal = 5 X 107 Mg, placed at 10 or 20 Mpc;
two kinematic datasets — low-res (FoV 1’ x 1/, PSF width 1”') and high-res (2" x 2", 0.1").

Large degeneracies, noisy 2 contours!



Example of Schwarzschild modelling of a real galaxy
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SDSS image

Galaxy: PGC 12257
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Distance: 70 Mpc

Comparative  study
led by Jonelle Walsh, >
using five different
modelling codes '
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observations (two kinematic datasets: NIFS and LRS2)



Example of Schwarzschild modelling of a real galaxy
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Example of Schwarzschild modelling of another galaxy
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Galaxy: NGC 4151

Distance: 15 Mpc T
one of the nearest ¢
Seyfert galaxies, with 4
M, measured by three |
methods: gas dynam-

ics [Hicks&Malkan 2008],
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dynamics [Onken+ 2014].
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Biases in dynamical black hole masses in barred galaxies

Ignoring the presence of a bar may bias M, upward:

» A bar seen end-on has a higher o mimicking a large BH [e.g., Gerhard 1988]

» Large M, creates high-velocity tails (positive hy) [van der Marel 1994],
while bars have negative hy [e.g., Bureau&Athanassoula 2005; Debattista+ 2005];
in combination with high o this results in overestimation of M, [Brown+ 2013]
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Uncertainties and biases in deprojection

Deprojection is not unique even in the axisymmetric (except edge-on) case!

. i i . . [Kochanek & Rybicki 1996;
Multi-Gaussian expansion gives only one possible Gerhard & Binney 1996]
deprojection, but not necessarily a good one. ﬁg '

1.10
= 105
1.00
I 0.95
0.90
0.85

0.80
1.20

1.15
1.10
<. 1.05
= 1.00
I 0.95
0.90
0.85
0.80

actual density profile deprojected from MGE



Uncertainties and biases in deprojection

The problem obviously becomes
much worse for non-axisymmetric
galaxies.

Need an algorithm for systemati-
cally exploring the range of pos-
sible 3d shapes and orientations
consistent with the observed pho-
tometry.

Some work has been done earlier
but is not widely known...
[Romanowsky & Kochanek 1997; Magorrian
1999; Chakrabarty 2010]

IMFIT [Erwin 2015] can use 3d den-
sity profiles and compute projec-
tions during image fitting.
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Example of artifacts in bar deprojection



Uncertainties and degeneracies in determining the potential

measure want to infer

f(Ea l27 /3)

d(x,y, 2)
Expect a large range of possible potentials consistent with observed kinematics!

f(Xa Y7 Vlos) -

Constraints get tighter when increasing spatial coverage (by excluding unrealistic orbit
distributions) or having imperfect/noisy data
(see discussions in Dejonghe&Merritt 1992; Valluri+ 2004; Magorrian 2006, 2013).
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Troubles with statistical foundations of the method

Schwarzschild’'s method is extremely flexible, but like any non-parametric
approach, is prone to overfitting and full of degeneracies.

» Distribution of orbit weights in best-fit models may be extremely jagged
— need to regularize the ill-conditioned inverse problem to obtain
physically meaningful solutions [eg., Merritt 1993; Valluri+ 2004]

> Best-fit x? is subject to discreteness noise in orbit space
— scatter in \2 values for nearby models can be > 1

» Picking up just one possible DF for the given potential ignores the fact that
many rather different orbit combinations produce similar y? values
—> need to marginalize over [all possible?] DFs
[Magorrian 2006, 2013; Bovy+ 2018; Prashin’s talk]

» Confidence intervals on model parameters determined by Ax? < O(1)
are unrealistically narrow; no reasons to expect that likelihood follows x?
statistics in the presence of O(10* — 10°) hidden parameters (orbit weights)



observations

Future directions: fitting 3d velocities
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Proper motion maps of the Large Magellanic Cloud from Gaia DR2

Residuals from best-fit axisymmetric models might point to bar-induced kinematics...
...or just be artifacts from Gaia systematic errors — need to wait for DR3 to confirm
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proper motions




Future directions: fitting 3d velocities

Milky Way bar now observed both in vi,s and proper motions fi,, fis;
even a limited distance information can be inferred from magnitudes of red clump stars.

Bar pattern speed measured from M2M models [Portail+ 2017, Clarke+ 2019]
and generalized Tremaine—Weinberg method [Sanders+ 2019].
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predictions for Milky Way bar kinematics in Gaia [Palicio+ 2020]



Summary

Schwarzschild’'s method is a useful tool for dynamical modelling,

but... a number of open questions remain:

Deprojection of complex morphology galaxies
Intrinsic degeneracies in potential determination
Large number of degrees of freedom

Statistically sound confidence intervals

vV vy VvVYyy

Biases in black hole mass measurements

The tools are available for the community!



