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Orbits intro

Keplerian orbit with semimajor axis a and eccentricity e:

E = −GM•
2a

Torb =
2π a3/2

√
GM•

Lcirc =
GM•√
−2E

=
√

GM•a

L = Lcirc

√
1− e2

R ≡ (L/Lcirc)2 = 1− e2 ≈ 2(1− e) for very eccentric orbits

If the physical radius of the loss cone rLC � a, only stars with 1− e � 1
are able to enter it, and in this case LLC ≈

√
2 G M• rLC.



Distribution functions intro

f (x, v) is the DF in the 6d phase space (normalized so that
∫
f d3x d3v = N?m?)

according to Jeans’ theorem, in a steady state it may depend only on the
integrals of motion, i.e., in a spherical potential, f (E , L) or f (E ,R).

The mass of stars per unit E ,R is

N(E ,R) dE dR = g(E ,R) f (E ,R) dE dR,

where the density of states g(E ,R) = 4π2 Torb(E ,R) L2
circ(E ) ≈ g(E );

in the Keplerian case, g(E ) =
√

2π3 (GM•)3

(−E)5/2 .

In case of isotropic velocity distribution
(⇔ ”thermal” eccentricity distribution),
f (E ,R) = f (E ).

Such a distribution is thermodynamically
preferred, but cannot be fully achieved
because of the existence of the loss cone.
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Relaxation intro

Classical (”Chandrasekhar”) two-body relaxation theory:
under the assumptions of

1. uncorrelated pairwise encounters,

2. weak deflections (impact parameter b � b90 ≡ Gm?/v
2),

3. slow evolution (Torb � Trel),

the evolution of the DF f (E ,R) can be described by
the orbit-averaged Fokker–Planck equation:

∂
[
f (E ,R, t) g(E ,R)

]
∂t

= −∂FE (E ,R, t)

∂E
− ∂FR(E ,R, t)

∂R
−FE = DEE

∂f

∂E
+DER

∂f

∂R + m?AE f

−FR = DRE
∂f

∂E
+DRR

∂f

∂R + m?AR f

 fluxes in E and R

diffusion coefficients advection coefficientsstellar mass



Relaxation intro (cont.)

Advection and diffusion coefficients are given by some integrals
over the DF of field stars, and nearly always this field DF is approximated
by the isotropized form f (E ) ≡

∫ 1

0
f (E ,R) dR:

DEE (E ,R) = m?

∫
dE ′ f (E ′) K (E ′,E ,R) with some kernel K .

Usually the field DF is the same as the test stars’ DF evolving under the
Fokker–Planck eqn.

In the multi-mass case (e.g., 1M� stars and 10M� black holes), diffusion
coefficients are the same for all species, and the field DF is given by the
sum of all species’ DFs additionally weighted by field stars’ mass, i.e.,
DEE (E ,R) =

∑
i m?,i

∫
dE ′ f i(E ′) K (E ′,E ,R).

Thus the relaxation rate is often dominated by the most massive species.

OTOH the advection coefficients are not weighted by the field star masses,
AE =

∑
i

∫
dE ′ f i(E ′)

K

(E ′,E ,R),
but then additionally multiplied by the test star mass in the eqn for flux.

This is what gives rise to dynamical friction and mass segregation.



Relaxation in multimass systems

For a typical IMF, a few % of mass is contained in black holes with m? & 10 M�:
this means that they significantly contribute to the relaxation rate
even without mass segregation!
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Diffusion in energy and mass segregation
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Diffusion in angular momentum

If we ignore for the moment the diffusion in the energy direction,
the 1d Fokker–Planck equation for f (R, t)

∣∣
E=const

is

∂f (R, t)

∂t
= −∂FR(R, t)

∂R , −FR = DRR
∂f

∂R + m?AR f

The advection (drift) coefficient AR turns out to be zero
(because the flux should vanish for the isotropic DF f (R) = const),
and the diffusion coefficient, to first order, is DRR(E ,R) ≈ D(E )R.

This is equivalent to the diffusion or heat conduction equation
in the cylindrical geometry, and the steady-state solution is

0 = D ∂
∂R

(
R ∂f

∂R

)
=⇒

f (R) =
f ln[R/RLC]

ln[1/RLC]− 1 +RLC
.
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Empty vs. full loss cone regimes

recall that stars are captured (loss cone is purged) only at pericentre passages

R

RLC

T/Torb

Two regimes:
compare Torb with the loss
cone repopulation timescale√
DRRTrep ' RLC.

q ≡ Torb

Trep
=

DTorb

RLC
.

q � 1: empty loss cone

q � 1: full loss cone

[Cohn & Kulsrud 1978]



Empty vs. full loss cone regimes
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When the loss cone is not entirely empty, the DF at its boundary is > 0;
one can write the boundary condition in the form

0 = f (RLC)− αR ∂f (R)

∂R

∣∣∣∣
RLC

, where α ≈ (q2 + q4)1/4 and q =
DTorb

RLC
.

The steady-state solution is

f (R) =
f
(

ln[R/RLC] + α
)

ln[1/RLC] + (1−RLC)(α− 1)
,

and the flux into the loss cone is

−FR =
f D

ln[1/RLC] + (1−RLC)(α− 1)
.

In the empty LC regime, the flux is proportional to the relaxation rate D
and only logarithmically depends on the loss-cone size RLC,
while in the full LC regime the flux is linearly proportional to RLC

and nearly independent of the relaxation rate.



Complication #1: non-spherical galaxy potentials
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[Vasiliev & Merritt 2013]

Even if the black hole dominates the total potential,
a non-spherical stellar distribution produces torques
that lead to periodic variations of orbital angular mo-
mentum even in absense of relaxation.

Stars from the ”centrophilic” orbits can sustain much
higher capture rates than in spherical galaxies if the
relaxation rate is low, and when they are drained,
the capture rates are only moderately higher due to
log-dependence of flux on RLC.



Complication #2: resonant relaxation

In a [nearly-]Keplerian potential, orbits are almost closed ellipses and can
interact with each other over many periods before ”decorrelating” due to
orbit precession.
This gives rise to enhanced relaxation in angular momentum [Rauch & Tremaine

1996; Hopman & Alexander 2006], but only at eccentricities below the ”Schwarzschild
barrier” set by relativistic precession [Merritt+ 2011; Brem+ 2013; Hamers+ 2014; Bar-Or

& Alexander 2015].

Schwarzschild barrier

[Merritt 2015]



Complication #3: binary SMBH and the Kozai–Lidov effect

Short-term boost in TDE rates after the for-
mation of a binary SMBH, and longer-term
enhancement in rates due to KL oscillations
(periodic variations of angular momentum) [Ivanov+

2005; Chen+ 2008–2011; Wegg & Bode 2011; Li+ 2017;

Darbha+ 2018; Thorp+ 2019; Lezhnin & Vasiliev 2019;

Naoz+ 2022; Melchor+ 2023]

[Chen+ 2009] [Melchor+ 2023]

[Mockler+ 2023]



Complication #4: anisotropic and time-dependent loss cones
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Complication #5: giant stars and partial disruptions
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Since the tidal radius is rLC ' r? (M•/m?)
1/3, giant stars can have a signifi-

cant contribution to the total TDE rate [Magorrian & Tremaine 1999, McLeod+ 2012].
Stars can ”grow” into the loss cone even without changing their orbit [Syer

& Ulmer 1999], and the outer envelope of a giant can be repeatedly stripped in
many partial disruption flares [McLeod+ 2013].
For M• & 108 M�, rLC for main-sequence stars is below rSchw, so only giants
produce TDE flares.
Partial TDEs can be much more frequent than ”normal” ones, ”steal” some
fraction of the latter, and even lead to ejection of the remnant [Bortolas+ 2023].



Complication #6: strong scattering and stellar collisions

Physical collisions mostly relevant for giant stars and can make them ”invisible”,
though rarely destroy the stars entirely [Dale+ 2009; Amaro-Seoane & Chen 2014, . . . ]

Strong scattering events (large-angle deflections) are ”rare” (fraction ∝ 1/ ln Λ of
all two-body encounters), and violate the local diffusion approximation.
Rarely considered in the context of Fokker–Planck or Monte Carlo methods
[Goodman 1983 (unpublished thesis); Fregeau & Rasio 2004; Bar-Or+ 2013; Teboul+ 2023]
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Tidal disruptions vs. EMRIs
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Compact objects (NS, BH) are not tidally disrupted, but can lose enough
energy to gravitational waves during close pericentre passages to end up on
very tight orbits (hence in the LISA frequency band), possibly completing
hundreds of orbits before merging.
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Tidal disruptions vs. EMRIs
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Compact objects (NS, BH) are not tidally disrupted, but can lose enough
energy to gravitational waves during close pericentre passages to end up on
very tight orbits (hence in the LISA frequency band), possibly completing
hundreds of orbits before merging.
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Formation of EMRIs
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In the standard scenario, COs diffuse through phase space just like stars,
but when they reach high enough eccentricity that the GW emission
timescale TGW becomes shorter than the diffusion timescale,
they slide down towards small a and low e.
The division line TGW = Tdif crosses the loss-cone boundary at some aGW.

Tdif ' R/D ∝ (1− e)Trel TGW ∝ (1− e)7/2a4



Formation of EMRIs
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Total rate: 4.62e-08

Resonant relaxation was once thought to be a signifi-
cant factor affecting the EMRI rates, but more careful
analysis showed that it is likely unimportant in the re-
gion of interest [cf. Alexander 2017]: the GW onset oc-
curs to the left of the Schwarzschild barrier, and hence
still determined by ordinary two-body relaxation.
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Methods for computing TDE rates

Steady-state

I Cohn & Kulsrud (1978) approximation in the two asymptotic regimes
(empty and full LC) [e.g., Zhong+ 2023]

I ”Standard approach”: integrate the CK78 steady-state flux from 1d FP
in angular momentum over the entire range of energies, weighted by f (E )
[e.g., Magorrian & Tremaine 1999; Wang & Merritt 2004; Merritt 2010; Stone & Metzger 2016]

Time-dependent (DF and/or potential)

I Same CK78 flux in angular momentum, but for an evolving f (E , t) described by
the 1d FP in energy space [e.g., Murphy+ 1991; Hopman & Alexander 2006; Amaro-Seoane &

Preto 2009; Merritt 2010]; PhaseFlow [Vasiliev 2017; Pfister+ 2019, 2020; Bortolas+ 2022, 2023]

I Full 2d FP in the {E , L} space [Cohn & Kulsrud 1978; Vasiliev & Zelnikov 2008; Merritt 2015;

Pan & Yang 2021; Broggi+ 2022]

I Monte Carlo in the {E , L} space [Shapiro & Marchant 1978; Freitag & Bentz 2002; Hopman

2009; Vasiliev 2015; Fragione & Sari 2018; Zhang & Amaro-Seoane 2023]

I Stellar-dynamical fluid models [Amaro-Seoane & Spurzem 2001]

I N-body simulations [Preto & Amaro-Seoane 2010; Zhong+ 2014; Panamarev+ 2019; . . . ]
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Methods (cont.)

Monte Carlo

I Follows the same Chandrasekhar prescription for two-body relaxation as FP

I Can incorporate additional physics more easily (stellar binaries, stellar evolution,
non-sphericity, large kicks, GW emission, . . . )

I More ”noisy” than FP (but still can use Nbody ' N? and a realistic rLC)

N-body

I ”Free” from approximations regarding relaxation and geometry

I Much more expensive even on modern hardware

I Can rarely be run with Nbody = N? and realistically small rLC =⇒
need to determine scaling relations and extrapolate to real galaxies
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[Amaro-Seoane 2018]



Predicted TDE rates

hover around 10−4±1 yr−1 per galaxy,
with a mildly negative trend with M•.

The overall rate is dominated by low-
mass black holes, whose demographics
are highly uncertain.
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Observed TDE rates

are generally lower by an order of mag-
nitude, though with significant uncer-
tainties about observational selection;

in E+A (post-starburst) galaxies the
rates are considerably higher.
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[Sazonov+ 2021] – eROSITA (X-ray) [Yao+ 2023] – ZTF (optical)



Predicted EMRI rates

are ∼ 10–100× lower than TDE rates
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