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Motivation

I 146% galaxies in the Universe are barred

I Bars have specific kinematic signatures, especially
in the higher-order Gauss–Hermite moments
[e.g., Bureau & Athanassoula 2005; Debattista+ 2005;

Méndez-Abreu+ 2014; Iannuzzi & Athanassoula 2015; Li+ 2018]

I Measurement of central supermassive black hole masses
may be biased when ignoring a bar [e.g., Brown+ 2013]

I Bars are fun, so why not model them! [citation needed]

Challenges

I Complex morphology, complex kinematics =⇒ need sophisticated methods

I Various other caveats



Schwarzschild’s orbit-superposition method: basics

Introduced by Schwarzschild(1979) as a practical approach
for constructing self-consistent triaxial models with prescribed ρ(x)⇔ Φ(x).

To invert the equation ρ(x) =

∫∫∫
f
(
I [x, v | Φ]

)
d3v,

discretize both the density profile and the distribution function:

ρ(x) =⇒ cells of a spatial grid; mass of each cell is Mc =

∫∫∫
x∈Vc

ρ(x) d3x ;

f (I) =⇒ collection of orbits with unknown weights [to be determined]:

f (I) =

Norb∑
k=1

wk δ(I − Ik)

integrals of motion

each orbit is a delta-function in the space of integrals of motion

adjustable weight of each orbit



Schwarzschild’s orbit-superposition method: self-consistency

orbits in the model target density

discretized orbit density
(fraction of time tkc that k-th orbit spends in c-th cell)

discretized density
(mass Mc in grid cells)

For each c-th cell we require
∑

k wk tkc = Mc , where wk ≥ 0 is orbit weight



Schwarzschild’s orbit-superposition method: fitting procedure

I Assume some potential Φ(x)
(e.g., from the deprojected luminosity profile plus parametric DM halo or SMBH)

I Construct the orbit library in this potential:
for each k-th orbit, store its contribution to the discretized density profile

tkc , c = 1..Ncell and to the kinematic observables ukn, n = 1..Nobs

I Solve the constrained optimization problem to find orbit weights wk :

minimize χ2 + S ≡
Nobs∑
n=1

(∑Norb

k=1 wk ukn − Un

δUn

)2

+ S
(
{wk}

)
subject to wk ≥ 0, k = 1..Norb,

Norb∑
k=1

wk tkc = Mc , c = 1..Ncell

I Repeat for different choices of potential and find the one that has lowest χ2

regularization term

observational constraints

their uncertainties

density constraints (cell masses)



Schwarzschild’s orbit-superposition method: implementations

Several commonly used independent implementations of the method:

I theoretical studies in triaxial geometry: Schwarzschild 1979, 1993; Pfenniger

1984; Statler 1987; Merritt & Fridman 1996; Siopis & Kandrup 2000; Vasiliev 2013

I spherical codes: Richstone & Tremaine 1984; Rix+ 1997; Jalali & Tremaine 2010;

Breddels & Helmi 2013; Kowalczyk+ 2017

I axisymmetric: “Leiden” [van der Marel, Cretton, Cappellari, . . . – since 1998]

I axisymmetric: “Nukers” [Gebhardt, Richstone, Kormendy, . . . – since 2000]

I axisymmetric: “MasMod” [Valluri, Merritt, Emsellem – since 2004]

I triaxial/Milky Way bar: Zhao, Wang, Mao 1996, 2012

I triaxial: van den Bosch, van de Ven, de Zeeuw, Zhu, . . . – since 2008

I triaxial: Vasiliev & Valluri, in prep.



New implementation of Schwarzschild’s method: highlights

I arbitrary geometry (from spherical to triaxial),
arbitrary density profiles (⇒ flexible Poisson solver)

I rotating frame (⇒ triaxial bars)

I random sampling of initial conditions for orbits

I several choices for 3d intrinsic density constraints
(incl. piecewise-linear shape elements)

I representation of the 3d observational datacube
(X ,Y , vlos) in terms of B-splines

I either Gauss–Hermite moments or a full LOSVD fitting

I very efficient quadratic optimization solver

I Publicly available as part of Agama library for dynamical modelling
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Measurement of gravitational potential

Simple spherical model: Φ(r) = Υ Φ0(r)− G M•/r , two free parameters:
mass-to-light ratio Υ, SMBH mass M•.

Consider the line-of-sight through the galaxy center:
to fit a peak in velocity dispersion σlos(R ≈ 0), one may either increase M•,
or make the orbits of stars more radially anisotropic.

Inference on the potential from σlos(R) alone (e.g., in Jeans eqn)
suffers from the mass–anisotropy degeneracy (MAD).



Measurement of gravitational potential

Simple spherical model: Φ(r) = Υ Φ0(r)− G M•/r , two free parameters:
mass-to-light ratio Υ, SMBH mass M•.

Consider the line-of-sight through the galaxy center:
to fit a peak in velocity dispersion σlos(R ≈ 0), one may either increase M•,
or make the orbits of stars more radially anisotropic.

Inference on the potential from σlos(R) alone (e.g., in Jeans eqn)
suffers from the mass–anisotropy degeneracy (MAD).

Dejonghe & Merritt (1992) showed that one may uniquely infer f (E , L) from
the full LOSVD F(R , vlos) in the given (assumed) potential, and conjectured
that the range of potentials for which f (E , L) ≥ 0 is rather narrow.

F(R , vlos) =⇒

{
f (E , L)

Φ(r)

more generally, F(X ,Y , vlos) =⇒

{
f (E , I2, I3)

Φ(x , y , z)

measure want to infer



Measurement of gravitational potential

Simple spherical model: Φ(r) = Υ Φ0(r)− G M•/r , two free parameters:
mass-to-light ratio Υ, SMBH mass M•.

Consider the line-of-sight through the galaxy center:
to fit a peak in velocity dispersion σlos(R ≈ 0), one may either increase M•,
or make the orbits of stars more radially anisotropic.

Inference on the potential from σlos(R) alone (e.g., in Jeans eqn)
suffers from the mass–anisotropy degeneracy (MAD).

Dejonghe & Merritt (1992) showed that one may uniquely infer f (E , L) from
the full LOSVD F(R , vlos) in the given (assumed) potential, and conjectured
that the range of potentials for which f (E , L) ≥ 0 is rather narrow.

We can test this using a Gauss–Hermite representation of the LOSVD:
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Measurement of gravitational potential

Simple spherical model: Φ(r) = Υ Φ0(r)− G M•/r , two free parameters:
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Measurement of gravitational potential

Simple spherical model: Φ(r) = Υ Φ0(r)− G M•/r , two free parameters:
mass-to-light ratio Υ, SMBH mass M•.

Consider the line-of-sight through the galaxy center:
to fit a peak in velocity dispersion σlos(R ≈ 0), one may either increase M•,
or make the orbits of stars more radially anisotropic.

Inference on the potential from σlos(R) alone (e.g., in Jeans eqn)
suffers from the mass–anisotropy degeneracy (MAD).

Dejonghe & Merritt (1992) showed that one may uniquely infer f (E , L) from
the full LOSVD F(R , vlos) in the given (assumed) potential, and conjectured
that the range of potentials for which f (E , L) ≥ 0 is rather narrow.

We can test this using a Gauss–Hermite representation of the LOSVD:
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Measurement of gravitational potential: degeneracies

Magorrian (2006) points out that this degeneracy only
exists in the noise-free case, but disappears when the
data is noisy and the fit is not perfect.

He argues that in order to obtain model-independent
constraints on the potential, one needs to marginalize
over all possible choices of DF instead of considering
only the best-fit one.

A proof-of-concept in the context of Made-to-measure models

is given in Bovy, Hunt & Kawata 2018

A possibly more practical alternative is bootstrapping:

– repeat the fit for different subsets of data

– find the best-fit solution for each subset

– use the distribution of parameters of these best-fits
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Measurement of gravitational potential: bootstrapping

noiseless



Uncertainties and biases in deprojection

i = 90◦ i = 45◦

actual density profile deprojected from MGE

Deprojection is not unique even in the axisymmetric (except edge-on) case!

Multi-Gaussian expansion gives only one possible
deprojection, but not necessarily a good one.

[Kochanek & Rybicki 1996;
Gerhard & Binney 1996]



Measurement of potential

0 1 2 3 4 5 6

M •/(0.002 Mgal)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

M
/L

χ2

2

6

12

19

19

29

29

40

40

53

53

69

69

86

86

105

105

126

126

149

149

174202231
0 1 2 3 4 5 6

M •/(0.002 Mgal)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

M
/L

χ2

612 1
9

29 4053

69

86

105 126149

174

202231262 295330367 406

actual density profile deprojected from MGE

If the shape of the 3d mass distribution is “guessed” correctly, the potential
parameters are recovered well, although with large uncertainty intervals.

If the shape is wrong, the potential is tightly constrained but biased.



Measurement of pattern speed

data
[Shen+ 2010]
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Measurement of pattern speed
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Measurement of pattern speed

data
[Shen+ 2010]
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Summary

I Deprojection is the biggest uncertainty and source of systematic error

I Ellipsoidally-stratified density profiles are not appropriate for bars

I Pattern speed of a bar is relatively well constrained

I Large intrinsic degeneracy in SMBH mass measurement (in absense of noise)

I Bootstrapping may help to estimate uncertainties more realistically

I New implementation of Schwarzschild’s method available to the community


