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Motivation

» determine structural and dynamical properties of bars
(length, shape, pattern speed, ...)

> measure mass distribution (gravitational potential),

in particular, central supermassive black holes

work in collaboration with Shashank Dattathri and Monica Valluri




The problem

B

Pathway from 2d surface brightness profile to 3d density profile is non-unique



The problem

Fourier Slice Theorem [Rybizki 1987]:

surface density X(X,Y) = its Fourier transform f(kx, ky)
corresponds to the Fourier transform of the 3d density p(kx, ky, kz = 0),
i.e. provides no constraints on p(..., kz # 0).

For an axisymmetric system at an inclination /, nothing is known of its p
in the “cone of ignorance” with opening angle 90° — / around k,.




lllustration of non-uniqueness of axisymmetric deprojection

It turns out that there is a large family of axisymmetric “konus density”
profiles that are completely invisible at any inclination i < i, < 90°
[Gerhard & Binney 1996; Kochanek & Rybizki 1996].
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e ot D@

side-on view: p

projected density vanishes
for all inclinations i <45°

image plane: ©




lllustration of non-uniqueness of axisymmetric deprojection

It turns out that there is a large family of axisymmetric “konus density”
profiles that are completely invisible at any inclination / < i, < 90°
[Gerhard & Binney 1996; Kochanek & Rybizki 1996].

Adding it to an ordinary ellipsoidal density profile, one can make it
boxy or disky, while still appearing perfectly elliptical in projection.
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The degeneracy is much worse for triaxial systems.

Adding kinematic information should lift the degeneracy [Magorrian 1999].



Approaches to deprojection

1. Ellipsoidal assumption: p(x, y,z) = ), m=+/x2+(y/p)? + (z/9)%
QU
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In the axisymmetric case, the projected axis ratio ¢’ = v/q? sini + cos? i
— deprojection is possible for inclination angles i > i, = arccos q’.

Generalization to a triaxial case: for a given projected shape and assumed
orientation (viewing angles), the deprojection is either unique or impossible.

Widely used in practice, e.g. Multi-Gaussian Expansion [Cappellari 2002].



Approaches to deprojection

1. Ellipsoidal assumption: p(x, y,z) =

m), m=\/x2+ (y/p)* + (z/q)>.

2. Forward modelling of projected density:

parametric / \ non-parametric

» choose a suitable functional form
for p(x,y,7: p)

P assume some viewing angles )
and parameters p

» compute the projected profile
Y(X,Y)

» compare with the observed surface
density and compute deviation x?

> repeat for different choices of ¥
and p to minimize 2

vyy

(or rather, multiparametric)

choose a very general / flexible
functional form with many free params
(e.g., splines or a basis set expansion)
assume some angles 1 and params p
compute projected X

compare with observations; compute x?

and add some regularization penalty
repeat for many choices of @ and p
[e.g., Magorrian 1999; de Nicola+ 2020]



Photometric fitting

[reasonably] simple models
multiple components

sky subtraction

foreground masking

PSF convolution

» MGEFit [Cappellari 2002]:
“nonparametric” (multiple elliptical Gaussians) = ellipsoidal deprojection

» GalFit [Peng+ 2002, 2010]: many flexible 2d profiles,
but deprojection is straightforward only for ellipsoidal models

» ImFit [Erwin 2015]: many 2d and 3d profiles (including user-defined),
may project 3d model to 2d instead of deprojecting 2d to 3d



X-shaped bar model [Robin+ 2012; Fragkoudi+ 2015]
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First application: edge-on projections

face-on view Y = 45° Snapshot
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First application: edge-on projections

The fitted model qualitatively recovers the 3d density profile,
though not without some defects 1) = 45°
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Degeneracies in determining bar orientation

20000

It is impossible to distinguish a rotated bar
(0 <9 < imax < 90°) from a shorter bar

Y
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Modelling approaches for barred galaxies

Challenges: triaxial geometry, chaotic regions in phase space

Goals: Q

Jeans modelling -
Distribution functions, e.g., f(J) -
Tremaine—Weinberg

Guided N-body simulations (made-to-measure)

+ o+ W

Schwarzschild orbit-superposition modelling



Modelling approaches for barred galaxies: made-to-measure

Introduced by Syer & Tremaine 1996,
grown up and flourished in Ortwin Gerhard’s group
[Bissantz+ 2004, de Lorentzi+ 2007, Portail+ 2015; Blafia+ 2019],

several other implementations exist [Dehnen 2009;
Long & Mao 2012; Hunt & Kawata 2013; Malvido & Sellwood 2015].

Idea: evolve an N-body model while continuously adjusting particle weights
to match the observables (density and kinematics).

Has been applied to the Milky Way bar and to a few external galaxies.

observed galaxy (M31) M2M model [Blafia+ 2019]



Modelling approaches for barred galaxies: orbit superposition

Introduced by Schwarzschild (1979) as a practical approach
for constructing dynamically self-consistent triaxial models
with prescribed p(x) < ®(x).

|ntegrals of motion

To invert the equation p(x /// I[x v | 9]) d’v,

discretize both the density profile and the distribution function:

p(x) = cells of a spatial grid; mass of each cell is M, = /// p(x) d*x;

XGVC
f(Z) = collection of orbits with unknown weights [to be determined]:

orb
f(T) = Z w 0(Z — I)
& each orbit is a delta-function in the space of integrals of motion

adjustable weight of each orbit



Schwarzschild’s orbit-superposition method: self-consistency

orbits in the model target density

discretized orbit density discretized density
(fraction of time t). that k-th orbit spends in c-th cell) (mass V. in grid cells)

For each c-th cell we require >, wy ti,c = M., where wy, > 0 is orbit weight



Schwarzschild’s orbit-superposition method: kinematics

orbits in the model
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Schwarzschild’s orbit-superposition method: kinematics
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Gauss—Hermite parametrization of LOSVDs [van der Marel & Franx 1993; Gerhard 1993]



Schwarzschild’s orbit-superposition method: fitting procedure

Solve the linear system with non-negativity constraints on the solution vector wy > 0
(linear or non-linear optimization problem)
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Schwarzschild’s orbit-superposition method: fitting procedure
» Assume some potential ®(x)
(e.g., from the deprojected luminosity profile plus parametric DM halo or SMBH)

» Construct the orbit library in this potential:
for each k-th orbit, store its contribution to the discretized density profile

tie, € = 1..Nee and to the kinematic observables wy,, n = 1..Nyps

» Solve the constrained optimization problem to find orbit weights w;:

Nobs Norb 2
Ce _1 Wy Ugp — U
minimize x> + S = E 2 T ]+ S({wm})
n=1 n
subject to w, >0, k =1..Nyp,
observational constraints
Norb
E Wi tie = M., c= 1. N their uncertainties
k=1 T density constraints (cell masses)

> Repeat for different choices of potential and find the one that has lowest )2



Schwarzschild’s orbit-superposition method: implementations
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theoretical studies in triaxial geometry: Schwarzschild 1979, 1993; Pfenniger 1984;
Statler 1987; Merritt & Fridman 1996; Siopis & Kandrup 2000; Vasiliev 2013

spherical codes: Richstone & Tremaine 1984; Rix+ 1997; Jalali & Tremaine 2010;
Breddels & Helmi 2013; Kowalczyk+ 2017

axisymmetric: “Leiden” [van der Marel, Cretton, Cappellari, ...~ since 1998]
axisymmetric: “Nukers” [Gebhardt, Richstone, Kormendy, ...~ since 2000]
axisymmetric: “MasMod" [Valluri, Merritt, Emsellem — since 2004]

triaxial /Milky Way bar: Zhao, Wang, Mao 1996, 2012

triaxial: van den Bosch, van de Ven, de Zeeuw, Zhu, ...—since 2008 = “Dynamite”
triaxial: “SMART" [Neureiter+ 2021]

triaxial: “Forstand” [Vasiliev & Athanassoula 2015; Vasiliev & Valluri 2020]



Schwarzchild modelling of deprojected bars
MUSE-like kinematic maps (1’ FoV) of a Milky Way-like galaxy at D = 20 Mpc
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Recovery of bar pattern speed

Q is recovered almost perfectly if the true 3d density is used,
or to within 10% if the deprojected density is used.

This is for the most challenging edge-on orientation,
where the Tremaine-Weinberg method is not applicable!

True density model Deprojected model 300
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—e— True density model
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Recovery of bar orientation

Bar orientation is also constrained much better than from pure photometry
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Recovery of black hole mass

Central supermassive black hole 151

» does not destroy the bar

(see Monica's talk on Thursday) <

» has only an upper limit on M, in these models

» is very sensitive to the accuracy of
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Summary

» Photometric bar deprojection:
possible with IMFIT, but has some degeneracies

» Schwarzchild modelling of barred galaxies:
recovers pattern speed, orientation and stellar mass;

e FORSTAND |[Vasiliev & Valluri 2020; Dattathri+ in prep.]
e DYNAMITE+BAR [Tahmasebzadeh+ 2022, see next talk]




