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Motivation

I determine structural and dynamical properties of bars

(length, shape, pattern speed, . . . )

I measure mass distribution (gravitational potential),

in particular, central supermassive black holes

work in collaboration with Shashank Dattathri and Monica Valluri



The problem

⇒

Pathway from 2d surface brightness profile to 3d density profile is non-unique



The problem

Fourier Slice Theorem [Rybizki 1987]:

surface density Σ(X ,Y ) =⇒ its Fourier transform Σ̂(kX , kY )
corresponds to the Fourier transform of the 3d density ρ̂(kX , kY , kZ = 0),
i.e. provides no constraints on ρ̂(. . . , kZ 6= 0).

For an axisymmetric system at an inclination i , nothing is known of its ρ̂
in the “cone of ignorance” with opening angle 90◦ − i around kz .
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Illustration of non-uniqueness of axisymmetric deprojection

It turns out that there is a large family of axisymmetric “konus density”
profiles that are completely invisible at any inclination i ≤ imin < 90◦

[Gerhard & Binney 1996; Kochanek & Rybizki 1996].
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Illustration of non-uniqueness of axisymmetric deprojection

It turns out that there is a large family of axisymmetric “konus density”
profiles that are completely invisible at any inclination i ≤ imin < 90◦

[Gerhard & Binney 1996; Kochanek & Rybizki 1996].

Adding it to an ordinary ellipsoidal density profile, one can make it
boxy or disky, while still appearing perfectly elliptical in projection.

+ =

The degeneracy is much worse for triaxial systems.

Adding kinematic information should lift the degeneracy [Magorrian 1999].



Approaches to deprojection

1. Ellipsoidal assumption: ρ(x , y , z) = ρ(m), m ≡
√

x2 + (y/p)2 + (z/q)2.
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In the axisymmetric case, the projected axis ratio q′ =
√

q2 sin2 i + cos2 i
=⇒ deprojection is possible for inclination angles i > imin ≡ arccos q′.

Generalization to a triaxial case: for a given projected shape and assumed
orientation (viewing angles), the deprojection is either unique or impossible.

Widely used in practice, e.g. Multi-Gaussian Expansion [Cappellari 2002].



Approaches to deprojection

1. Ellipsoidal assumption: ρ(x , y , z) = ρ(m), m ≡
√

x2 + (y/p)2 + (z/q)2.

2. Forward modelling of projected density:

parametric

I choose a suitable functional form
for ρ(x , y , z ; p)

I assume some viewing angles ψ
and parameters p

I compute the projected profile
Σ(X ,Y )

I compare with the observed surface
density and compute deviation χ2

I repeat for different choices of ψ
and p to minimize χ2

non-parametric
(or rather, multiparametric)

I choose a very general / flexible
functional form with many free params
(e.g., splines or a basis set expansion)

I assume some angles ψ and params p

I compute projected Σ

I compare with observations; compute χ2

and add some regularization penalty

I repeat for many choices of ψ and p

[e.g., Magorrian 1999; de Nicola+ 2020]



Photometric fitting

⇒
[reasonably] simple models

multiple components

sky subtraction

foreground masking

PSF convolution

I MGEFit [Cappellari 2002]:
“nonparametric” (multiple elliptical Gaussians) ⇒ ellipsoidal deprojection

I GalFit [Peng+ 2002, 2010]: many flexible 2d profiles,
but deprojection is straightforward only for ellipsoidal models

I ImFit [Erwin 2015]: many 2d and 3d profiles (including user-defined),
may project 3d model to 2d instead of deprojecting 2d to 3d



X-shaped bar model [Robin+ 2012; Fragkoudi+ 2015]

ρ ∝ sech2(−R)

R =

([( x

Xbar

)c⊥
+
( y

Ybar

)c⊥]c‖/c⊥
+
( z

Zbar

)c‖)1/c‖

c‖, c⊥: boxiness coefficients

Zbar = z0 +

Apea exp
(
− (x − Rpea)2 + y 2

2w 2
pea

)
+

Apea exp
(
− (x + Rpea)2 + y 2

2w 2
pea

)
Apea: X/peanut amplitude
Rpea: peanut location
wpea: peanut width



First application: edge-on projections

face-on view

edge-on view, ψ = 0
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First application: edge-on projections

The fitted model qualitatively recovers the 3d density profile,
though not without some defects ψ = 45◦



Degeneracies in determining bar orientation
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onIt is impossible to distinguish a rotated bar
(0 < ψ < imax . 90◦) from a shorter bar
viewed at ψ = 0◦ just from photometry.

(It might be easier at lower inclinations i < 90◦).

Kinematics / dynamical modelling should help?



Modelling approaches for barred galaxies

Challenges: triaxial geometry, chaotic regions in phase space

Goals: Ω Φ

Jeans modelling – –

Distribution functions, e.g., f (J) – –

Tremaine–Weinberg ± –

Guided N-body simulations (made-to-measure) + +

Schwarzschild orbit-superposition modelling + +



Modelling approaches for barred galaxies: made-to-measure

Introduced by Syer & Tremaine 1996,
grown up and flourished in Ortwin Gerhard’s group

[Bissantz+ 2004, de Lorentzi+ 2007, Portail+ 2015; Blaña+ 2019];

several other implementations exist [Dehnen 2009;

Long & Mao 2012; Hunt & Kawata 2013; Malvido & Sellwood 2015].

Idea: evolve an N-body model while continuously adjusting particle weights
to match the observables (density and kinematics).

Has been applied to the Milky Way bar and to a few external galaxies.

observed galaxy (M31) M2M model [Blaña+ 2019]



Modelling approaches for barred galaxies: orbit superposition

Introduced by Schwarzschild (1979) as a practical approach
for constructing dynamically self-consistent triaxial models
with prescribed ρ(x)⇔ Φ(x).

To invert the equation ρ(x) =

∫∫∫
f
(
I [x, v | Φ]

)
d3v,

discretize both the density profile and the distribution function:

ρ(x) =⇒ cells of a spatial grid; mass of each cell is Mc =

∫∫∫
x∈Vc

ρ(x) d3x ;

f (I) =⇒ collection of orbits with unknown weights [to be determined]:

f (I) =

Norb∑
k=1

wk δ(I − Ik)

integrals of motion

each orbit is a delta-function in the space of integrals of motion

adjustable weight of each orbit



Schwarzschild’s orbit-superposition method: self-consistency

orbits in the model target density

discretized orbit density
(fraction of time tkc that k-th orbit spends in c-th cell)

discretized density
(mass Mc in grid cells)

For each c-th cell we require
∑

k wk tkc = Mc , where wk ≥ 0 is orbit weight



Schwarzschild’s orbit-superposition method: kinematics

orbits in the model

target LOSVDorbit LOSVDs



Schwarzschild’s orbit-superposition method: kinematics

Gauss–Hermite parametrization of LOSVDs [van der Marel & Franx 1993; Gerhard 1993]



Schwarzschild’s orbit-superposition method: fitting procedure
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Solve the linear system with non-negativity constraints on the solution vector wk ≥ 0

(linear or non-linear optimization problem)



Schwarzschild’s orbit-superposition method: fitting procedure

I Assume some potential Φ(x)
(e.g., from the deprojected luminosity profile plus parametric DM halo or SMBH)

I Construct the orbit library in this potential:
for each k-th orbit, store its contribution to the discretized density profile

tkc , c = 1..Ncell and to the kinematic observables ukn, n = 1..Nobs

I Solve the constrained optimization problem to find orbit weights wk :

minimize χ2 + S ≡
Nobs∑
n=1

(∑Norb

k=1 wk ukn − Un

δUn

)2

+ S
(
{wk}

)
subject to wk ≥ 0, k = 1..Norb,

Norb∑
k=1

wk tkc = Mc , c = 1..Ncell

I Repeat for different choices of potential and find the one that has lowest χ2

regularization term

observational constraints

their uncertainties

density constraints (cell masses)



Schwarzschild’s orbit-superposition method: implementations

I theoretical studies in triaxial geometry: Schwarzschild 1979, 1993; Pfenniger 1984;

Statler 1987; Merritt & Fridman 1996; Siopis & Kandrup 2000; Vasiliev 2013

I spherical codes: Richstone & Tremaine 1984; Rix+ 1997; Jalali & Tremaine 2010;

Breddels & Helmi 2013; Kowalczyk+ 2017

I axisymmetric: “Leiden” [van der Marel, Cretton, Cappellari, . . . – since 1998]

I axisymmetric: “Nukers” [Gebhardt, Richstone, Kormendy, . . . – since 2000]

I axisymmetric: “MasMod” [Valluri, Merritt, Emsellem – since 2004]

I triaxial/Milky Way bar: Zhao, Wang, Mao 1996, 2012

I triaxial: van den Bosch, van de Ven, de Zeeuw, Zhu, . . . – since 2008 ⇒ “Dynamite”

I triaxial: “SMART” [Neureiter+ 2021]

I triaxial: “Forstand” [Vasiliev & Athanassoula 2015; Vasiliev & Valluri 2020]



Schwarzchild modelling of deprojected bars

MUSE-like kinematic maps (1′ FoV) of a Milky Way-like galaxy at D = 20 Mpc



Recovery of bar pattern speed

Ω is recovered almost perfectly if the true 3d density is used,
or to within 10% if the deprojected density is used.

This is for the most challenging edge-on orientation,
where the Tremaine–Weinberg method is not applicable!

ψ = ψtrue = 45◦



Recovery of bar orientation

Bar orientation is also constrained much better than from pure photometry
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Recovery of black hole mass

Central supermassive black hole

I does not destroy the bar
(see Monica’s talk on Thursday)

I has only an upper limit on M• in these models

I is very sensitive to the accuracy of
reconstruction of enclosed stellar mass



Summary

I Photometric bar deprojection:

possible with IMFIT, but has some degeneracies

I Schwarzchild modelling of barred galaxies:

recovers pattern speed, orientation and stellar mass;

• FORSTAND [Vasiliev & Valluri 2020; Dattathri+ in prep.]

• DYNAMITE+BAR [Tahmasebzadeh+ 2022, see next talk]


