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The Gaia world

entire Milky Way: 1011

Gaia 5d astrometric catalogue: 1.5× 109

ϖ/ϵϖ > 5: 2× 108

ϖ/ϵϖ > 10: 1× 108

Gaia RVS sample: 3× 107

APOGEE DR17: 6× 105



Distance distribution of various catalogues
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Astro-photometric distance measurements

▶ untitled [Bailer-Jones+ 2018, 2021]

▶ StarHorse [Queiroz+ 2018, 2020, Anders+ 2019, 2022]

▶ GSP-Phot [Andrae+ 2023]

▶ etc...
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usually kept fixed!



Measuring the density profile

Optimizing a model for ρ(x) can be part of the inference procedure:

lnL =
Nstars∑
i=1

ln

∫
dD ρ

(
x(D); p

)
× P

(
D | ϖi , ϵϖ,i

)
× P

(
D | Gi ,G

BP-RP
i

)
,

where p are parameters of the density model.

Even if the distances to individual stars are not precisely measured,
the distance distribution of the entire catalogue can be recovered.
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where p are parameters of the density model.

Even if the distances to individual stars are not precisely measured,
the distance distribution of the entire catalogue can be recovered.

ρ(x) = ρtrue(x) × S(x,G ,GBP-RP, . . . ) is the observed density of tracers;

S(. . . ) is the selection function of the catalogue – assumed to be known (!)

see e.g. https://gaia-unlimited.org for the SF of various subsets of Gaia.

https://gaia-unlimited.org


Effect of spatial selection function

density of stars

mean apparent magnitude

Entire Milky Way
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Effect of spatial selection function

density of stars

mean apparent magnitude

Accounting for Gaia magnitude limit and scanning law
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Effect of spatial selection function

density of stars

mean apparent magnitude

Accounting for Gaia magnitude limit, scanning law and dust extinction
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Measuring the density profile using Gaia

In a recent study Everall+ 2022a,b

considered just the two nar-
row cone around Galactic poles,
which is nearly dust-free, and
made a number of further sim-
plifications regarding the distri-
bution of stars in absolute mag-
nitudes. Then the observed dis-
tribution of parallaxes and appar-
ent magnitudes was used to mea-
sure the vertical density profile
ρ(R⊙, z).

Ideally one needs to perform
this fit in a larger volume, us-
ing colours and proper mo-
tion information to distin-
guish nearby dwarfs from dis-
tant giants.



Measuring the density profile using DECam legacy surveys
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Adding kinematic information

If a star has small PM, it is more likely to be at large distance...

lnL =
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ln
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+ ϵ2µ,i


[Rehemtulla+ 2022] – proof of concept for RR Lyrae ; [Bailer-Jones 2023] – kinegeometric distances
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BP/RP spectra [Zhang+ 2023]



Putting it all together: the ultimate data-mining exercise

▶ use as large dataset as possible (entire Gaia 5d astrometric catalogue +

all complementary photometric and spectroscopic surveys).

▶ assume some functional form (e.g., splines) for the spatial and
kinematic profiles of several Galactic components (discs, stellar halo):
ρ(x), v(x), σij(x).

▶ fit the parameters of these profiles, marginalising over the distances to
individual stars, separately for many sightlines (e.g., HEALpix).

▶ to enforce continuity between adjacent sightlines while preserving
spatial resolution, rely on some sort of interpolation (e.g., spherical

harmonics).

▶ at this stage, no dynamical prior is imposed – this is a purely empirical
model of the Galactic structure and kinematics.



Pilot run on mock data
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▶ 105 stars drawn from a mixture
of three components (thin &
thick discs and halo).

▶ use photometry (CMD),
parallax and PM as input data.

▶ fit scale radii & heights for both
discs, density slope for the halo,
and vϕ, σ for all components.

▶ membership and distances to
individual stars are not strongly
constrained, but the parameters
of the populations are well
recovered.

▶ need to test on more realistic
mocks!



Extragalactic analogy: analysis of IFU datacubes
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1. original datacube 2. binning 3. spectral fitting

4. Gauss–Hermite parameterisation

5. kinematic maps

[credit: M.Cappellari]



Overall context and next steps

▶ fitting full-scale dynamical models directly to the Gaia data
(e.g., [Nitschai+ 2020, 2021; Robin+ 2022; Binney & Vasiliev 2023, 2024])

is expensive and usually relies on high-quality 6d subsamples
(although see [McMillan & Binney 2013; Bovy & Rix 2013; Trick+ 2016] for the formalism of

fitting incomplete datasets and [Hattori+ 2022; Li & Binney 2022] for the application to the 5d

catalogue of RR Lyrae).

▶ by reducing the entire catalogue to an empirical data-driven model
with O(104) physically interpretable parameters, one can take care of
selection function and error deconvolution relatively cheaply.

▶ this ”intermediate representation” could serve as input for proper
dynamical models (e.g., Schwarzschild-type), even allowing for
disequilibrium effects.



Overall context and next steps

[Alexej Jawlensky] [Wassily Kandinsky]


