# Mapping the structure and kinematics of the Milky Way using the entire Gaia catalogue

#### **Eugene Vasiliev**

University of Surrey

/lurnau am Staffelsee Gabriele Münter]

MWMethods workshop, Schloss Rinberg, 16 July 2024



Gaia 5d astrometric catalogue:  $1.5 \times 10^9$ 



Gaia 5d astrometric catalogue:  $1.5\times10^9$ 

 $arpi/\epsilon_arpi>$  5:  $2 imes 10^8$ 



Gaia 5d astrometric catalogue:  $1.5 \times 10^9$  $\varpi/\epsilon_{\varpi} > 5$ :  $2 \times 10^8$  $\varpi/\epsilon_{\varpi} > 10$ :  $1 \times 10^8$ 



 $\begin{array}{l} \textit{Gaia 5d astrometric catalogue: } 1.5\times10^9\\ \varpi/\epsilon_\varpi > 5: \ 2\times10^8\\ \varpi/\epsilon_\varpi > 10: \ 1\times10^8\\ \hline \textit{Gaia RVS sample: } 3\times10^7 \end{array}$ 



 $\begin{array}{l} Gaia \; 5d \; \text{astrometric catalogue: } 1.5 \times 10^9 \\ \varpi/\epsilon_\varpi > 5: \;\; 2 \times 10^8 \\ \varpi/\epsilon_\varpi > 10: \; 1 \times 10^8 \\ \hline Gaia \; \text{RVS sample: } 3 \times 10^7 \\ \hline APOGEE \; \text{DR17: } 6 \times 10^5 \end{array}$ 





#### entire Milky Way: $10^{11}$

Gaia 5d astrometric catalogue:  $1.5 \times 10^9$ 

 $\varpi/\epsilon_{\varpi} > 5$ :  $2 \times 10^8$ 

 $arpi/\epsilon_arpi>$  10: 1 imes 10<sup>8</sup>

Gaia RVS sample:  $3 \times 10^7$ 

APOGEE DR17:  $6\times 10^5$ 

#### Distance distribution of various catalogues



#### Astro-photometric distance measurements

- untitled [Bailer-Jones+ 2018, 2021]
- ► StarHorse [Queiroz+ 2018, 2020, Anders+ 2019, 2022]
- ► GSP-Phot [Andrae+ 2023]

etc...

 $\mathcal{P}(D) \propto \mathcal{P}(D \mid \varpi, \epsilon_{\varpi}) \times \mathcal{P}(D \mid G, G_{\mathsf{BP-RP}}) \times \mathcal{P}(D \mid \rho(\mathbf{x}))$ 



## Measuring the density profile

Optimizing a model for  $\rho(\mathbf{x})$  can be part of the inference procedure:  $\ln \mathcal{L} = \sum_{i=1}^{N_{\text{stars}}} \ln \int dD \ \rho(\mathbf{x}(D); \mathbf{p}) \times \mathcal{P}(D \mid \varpi_i, \epsilon_{\varpi,i}) \times \mathcal{P}(D \mid G_i, G_i^{\text{BP-RP}}),$ 

where  $\boldsymbol{p}$  are parameters of the density model.

Even if the distances to individual stars are not precisely measured, the distance distribution of the entire catalogue can be recovered.

#### Measuring the density profile

Optimizing a model for  $\rho(\mathbf{x})$  can be part of the inference procedure:

$$\ln \mathcal{L} = \sum_{i=1}^{N_{\text{stars}}} \ln \int dD \rho(\mathbf{x}(D); \mathbf{p}) \times \mathcal{P}(D \mid \varpi_i, \epsilon_{\varpi,i}) \times \mathcal{P}(D \mid G_i, G_i^{\text{BP-RP}}),$$

where  $\mathbf{p}$  are parameters of the density model.

Even if the distances to individual stars are not precisely measured, the distance distribution of the entire catalogue can be recovered.

 $\rho(\mathbf{x}) = \rho^{\text{true}}(\mathbf{x}) \times S(\mathbf{x}, G, G^{\text{BP-RP}}, ...)$  is the observed density of tracers; S(...) is the selection function of the catalogue – assumed to be known (!) see e.g. https://gaia-unlimited.org for the SF of various subsets of GAIA.

## Effect of spatial selection function

Entire Milky Way



mean apparent magnitude

#### Effect of spatial selection function

Accounting for  $\operatorname{GAIA}$  magnitude limit and scanning law



mean apparent magnitude

#### Effect of spatial selection function

Accounting for GAIA magnitude limit, scanning law and dust extinction

10 1010 0 10<sup>9</sup> -1030 108 number of stars 20 107 10 106 0 10<sup>5</sup> -10absolute mag 104 apparent mag -20 dist.modulus observed Gmag -30 10<sup>3</sup> -20 20 30 18 20 10 -30 -10 10 22 -5 ò 5 15 20 25

density of stars

mean apparent magnitude

#### Measuring the density profile using Gaia

In a recent study Everall+ 2022a,b considered just the two narrow cone around Galactic poles, which is nearly dust-free, and made a number of further simplifications regarding the distribution of stars in absolute magnitudes. Then the observed distribution of parallaxes and apparent magnitudes was used to measure the vertical density profile  $\rho(R_{\odot}, z).$ 

Ideally one needs to perform this fit in a larger volume, using colours and proper motion information to distinguish nearby dwarfs from distant giants.







#### Measuring the density profile using DECam legacy surveys



#### Adding kinematic information

If a star has small PM, it is more likely to be at large distance...

$$\begin{aligned} \ln \mathcal{L} &= \sum_{i=1}^{N_{\text{stars}}} \ln \int dD \\ &\times \rho^{\text{true}} (\mathbf{x}(D); \mathbf{p}) \\ &\times \mathcal{S} (\mathbf{x}, G_i, G_i^{\text{BP-RP}}) \\ &\times \mathcal{P} (D \mid \varpi_i, \epsilon_{\varpi,i}) \\ &\times \mathcal{P} (D \mid G_i, G_i^{\text{BP-RP}}) \\ &\times \mathcal{P} (\boldsymbol{\mu} \mid \boldsymbol{\mu}_i, \epsilon_{\mu,i}) \end{aligned}$$
e.g.,  $\mathcal{N} \left( \boldsymbol{\mu}_i \mid \left[ \frac{\sigma(\mathbf{x}(D); \mathbf{p})}{D} \right]^2 + \epsilon_{\mu,i}^2 \right) \end{aligned}$ 

[Rehemtulla+ 2022] - proof of concept for RR Lyrae ; [Bailer-Jones 2023] - kinegeometric distances

#### Adding kinematic information

If a star has small PM, it is more likely to be at large distance...

$$\begin{aligned} \ln \mathcal{L} &= \sum_{i=1}^{N_{\text{stars}}} \ln \int dD \\ &\times \rho^{\text{true}}(\mathbf{x}(D); \mathbf{p}) \\ &\times \mathcal{S}(\mathbf{x}, G_i, G_i^{\text{BP-RP}}) \\ &\times \mathcal{P}(D \mid \varpi_i, \epsilon_{\varpi,i}) \\ &\times \mathcal{P}(D \mid G_i, G_i^{\text{BP-RP}}) \\ &\times \mathcal{P}(\boldsymbol{\mu} \mid \boldsymbol{\mu}_i, \epsilon_{\mu,i}) \end{aligned}$$
e.g.,  $\mathcal{N}\left( \left| \boldsymbol{\mu}_i \right| \left| \left[ \frac{\sigma(\mathbf{x}(D); \mathbf{p})}{D} \right]^2 + \epsilon_{\mu,i}^2 \right| \right|^2 + \epsilon_{\mu,i}^2 \end{aligned}$ 

[Rehemtulla+ 2022] – proof of concept for RR Lyrae

side note: velocity uncertainty is dominated by distance rather than PM error



## Putting it all together: the ultimate data-mining exercise

- use as large dataset as possible (entire GAIA 5d astrometric catalogue + all complementary photometric and spectroscopic surveys).
- assume some functional form (e.g., splines) for the spatial and kinematic profiles of several Galactic components (discs, stellar halo): ρ(x), ν(x), σ<sub>ij</sub>(x).
- fit the parameters of these profiles, marginalising over the distances to individual stars, *separately for many sightlines* (e.g., HEALpix).
- to enforce continuity between adjacent sightlines while preserving spatial resolution, rely on some sort of interpolation (e.g., spherical harmonics).
- at this stage, no dynamical prior is imposed this is a purely empirical model of the Galactic structure and kinematics.

# Pilot run on mock data

- 10<sup>5</sup> stars drawn from a mixture of three components (thin & thick discs and halo).
- use photometry (CMD), parallax and PM as input data.
- membership and distances to individual stars are not strongly constrained, but the parameters to of the populations are well recovered.
- need to test on more realistic mocks!



#### Extragalactic analogy: analysis of IFU datacubes



#### **Overall context and next steps**

- fitting full-scale dynamical models directly to the GAIA data (e.g., [Nitschai+ 2020, 2021; Robin+ 2022; Binney & Vasiliev 2023, 2024]) is expensive and usually relies on high-quality 6d subsamples (although see [McMillan & Binney 2013; Bovy & Rix 2013; Trick+ 2016] for the formalism of fitting incomplete datasets and [Hattori+ 2022; Li & Binney 2022] for the application to the 5d catalogue of RR Lyrae).
- ▶ by reducing the entire catalogue to an empirical data-driven model with O(10<sup>4</sup>) physically interpretable parameters, one can take care of selection function and error deconvolution relatively cheaply.
- this "intermediate representation" could serve as input for proper dynamical models (e.g., Schwarzschild-type), even allowing for disequilibrium effects.

# **Overall context and next steps**



