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The prehistoric times (1990s)
LETTERS TO NATURE

VOL 370 - 21 JULY 1994

A dwarf satellite galaxy
in Sagittarius

R. A. Ibata®, G. Gilmore™ & M. J. Irwin'

* Institute of Astronomy, University of Cambridge, Madingley Road,
Cambridge CB3 OHA, UK

1 Royal Greenwich Observatory, Madingley Road,

Cambridge CB3 OEZ, UK

WE have detected a large, extended group of comoving stars in the
direction of the Galactic Centre, which we interpret as belonging to
a dwarf galaxy that is closer to our own Galaxy than any other
yet known. Located in the constellation of Sagittarius, and on the
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FIG. 1 The heliocentric radial velocity—colour distribution for
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The ancient era: 2MASS (early 2000s)




The ancient era: 2MASS (early 2000s)

colour selection corresponding to M giants reveals the Sgr stream [Majewski+ 2003]




The medieval era: SDSS (late 2000s)

field of streams with a bifurcation in the Sgr stream [Belokurov+ 2006]
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The medieval era: SDSS (late 2000s)

field of streams with a bifurcation in the Sgr stream [Belokurov+ 2006]
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The medieval era: SDSS (late 2000s)

another bifurcation in the trailing arm of the Sgr stream [Koposov+ 2012]
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The Gaia era (2018-)

only a few recent studies tried to refine the selection of stars in the Sgr stream
[Ibata+ 2020] [Antoja+ 2020; Ramos+ 2020]
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The Gaia era (2018-)

the present study focuses on the Sgr galaxy itself
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Separating the grains from the chaff

All ~ 107 stars in the input sample (13 < Gy < 18)
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Separating the grains from the chaff
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Separating the grains from the chaff
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Separating the grains from the chaff

Selection by CMD and PM
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Membership determination from mixture modelling

. 1.0
x — all observable properties of a star

(location «, 0; parallax @, PM pq, fis;

photometry G, BP — RP) 08 -

Each star belongs to one of C populations
described by probability distributions f.(x | 8)
with some (unknown) parameters 6,
normalized to unity: [ f.(x)dx = 1.

The mixture DF is a weighted sum of 0.4 -
component DFs:

c
Flx|0) =2 c1me fe(x | ),
where 7). is the fraction of stars in c-th
component, and chzl ne = 1.

0.2




Membership determination from mixture modelling

We have a dataset of N stars with

) AN
measured parameters x;, i = 1..N; ey ape ¥ .
i-th star belongs to the component with 5N :’-3.‘5:3,"::. 3T
index a;. * ':}-af. RPN
R
The log-likelihood of the observed dataset, AR
given the model parameters (0, n), is AR ‘E: . .
R \3.."’. e
N . .‘.!Jo S % . .‘.
InL = Zi:1 InL;, where ;,-..:{.33 s DL
_ C '-.:';." AR .
,C,' = fa,-(xi | 0) = Zc:l 5cai fC(X,' | 0) . :"“,,‘s;‘.... et
However, since we do not know the indices 0.3 SR £ LAl VLT T
a;, we use the mixture DF:
_ c
[,,' = f(X,- | 9) = ZC:]_ Nc fc(xi | 0)
As usual, the model parameters may be

inferred by maximizing In L
(optionally with some priors).



Membership determination from mixture modelling

Assume first that we know the parameters for
all DFs 0 and their fractions 7., but do not
know which star belongs to which component.

7c are prior membership probabilities (identical
for all stars), while the posterior probabilities
for i-th star with measured properties x; are

(0 _ _ nefe(xi]0)
L Yk f(xi | 6)




Membership determination from mixture modelling

Assume first that we know the parameters for

all DFs 0 and—theifractions=,, but do not

know which star belongs to which component.

7c are prior membership probabilities (identical
for all stars), while the posterior probabilities
for i-th star with measured properties x; are

©  Mef(xi| )
bi " = =¢ .
> ke Mk fi(xi | 6)

N

- 1 ()
At the same time, 1. = N ;pi ,
so the fractions can be computed
alongside membership probabilities.
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Membership determination from mixture modelling

Now that we know (probabilistically)

the membership of each point pfc),
we may update the parameters of the DFs 0:

(") — arg max( In ﬁ)
0

= arg max<z Z p ) In fe(xi | 0))

i=lc=

Fit the parameters 0 of each DF f. to the mea-

sured values x;, weighted by probabilities pfc).

f-(x) may have any suitable functional form:
— a Gaussian (6 are the mean and dispersion); 0.2 1

— a histogram (@ are the bin heights); o1

. 0.0 T T T T
Repeat these steps until convergence: 6 -4 -2 0 2

this is the expectation/maximization algorithm.



Separating the grains from the chaff — the fancy way
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Separating the grains from the chaff — the fancy way

red: Sgr members; gray: Milky Way foreground
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Separating the grains from the chaff — the fancy way

saturation: membership probability; brightness: density
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Separating the grains from the chaff — the fancy way

The combination of all selection criteria produces a very sharp
distinction between Sgr members and field stars
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— Sgr members (major axis)
—= Sgr members (minor axis)

- - field stars
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The Sagittarius galaxy remnant: photometry and total mass

comparison of magnitude distribution of Sgr members with
that of globular clusters of similar metallicity (z ~ —0.7.. — 1)
— determine the total mass of stars in Sgr M, ~ 108 M.
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The Sagittarius galaxy remnant: photometry and distance
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The Sagittarius galaxy remnant: kinematics
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Putting things into perspective

Ho = Vtan,O/ Dy
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Putting things into perspective

LR o — Vieso/Do X

Vips ~ Vios,0 + Mo DO X

perspective corrections




Putting things into perspective

L= o — Vlos,o/DoX *MO(D/DO - 1)

Vips ~ Vios,0 + Mo DO X

perspective corrections
distance correction




Putting things into perspective

B plo — Vieso/Dox — o (D/Do — 1) + u,/D
Vips = Vios,0 + Mo DO X

+ Uy
perspective corrections

distance correction

internal kinematics
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Putting things into perspective

B o — Vieso/Dox — o (D/Dy — 1) + u,/D

Vios = Vios,0 + [o DO X + ux z

perspective corrections
distance correction y
. . . X
internal kinematics

Perspective corrections can be compensated since we know v, o and Dy,
however, D is not known to sufficient accuracy to be corrected for.
But it affects only one component of the proper motion parallel to pq:

Hy = oy + Vieso/Dox = pio+u./D — 1o (D/Dy — 1) x
X o : oy~ /02+(u3h)2/D0

y,é = MS —|— V10570/D0€ ~ Uy/D

&L g
° O'g%O’/Do
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The Sagittarius galaxy remnant: kinematics
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The Sagittarius galaxy remnant: kinematics
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The Sagittarius galaxy remnant: kinematics

line-of-sight velocities for ~ 3300 stars:
compilation of Gaia RVS, APOGEE,
Pefiarrubia+ 2011, Frinchaboy+ 2012
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N-body models of a disrupting satellite

Goals:
» provide an interpretation of the observed kinematics

v

estimate the present-day total mass of the Sgr remnant

» explore possible evolutionary histories and progenitor properties

Method:

» construct various initial equilibrium models (stars + dark halo):
spherical, flattened, rotating, different density profiles, ...

» evolve the satellite in the static external potential of the Milky Way

v

iteratively adjust initial conditions to match its present-day position/velocity

» compare the simulated and observed kinematic maps

repeat dozens of times



Galactic side-on view

10 kpc



Distance [kpe
An example of a successful model

» velocity and PM dispersions = total mass and thickness
» elongation and distance gradient = 3d orientation

» distinct dip in p} correlated with distance
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An example of a successful model

» velocity and PM dispersions = total mass and thickness
» elongation and distance gradient = 3d orientation

» distinct dip in u;( correlated with distance
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Strongly tidally disturbed model

» too stretched along the orbit
» monotonic distance decrease towards the trailing arm

> serious misfit in y}
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Strongly tidally disturbed model

» too stretched along the orbit

» monotonic distance decrease towards the trailing arm

> serious misfit in y}
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More concentrated model

» too round and too compact
» transitions to the stream too early = misfit in ,u;(

» sharp jump in vis gsr profile along the major axis
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More concentrated model Law & Majewski 2010 — the most successful

model for the Sgr stream
» too round and too compact

» transitions to the stream too early = misfit in ,u;(

» sharp jump in vis gsr profile along the major axis
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Strong initial rotation

» residual rotation = non-monotonic vies gsr profile
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Strong initial rotation tokast 2010 scenario of a tidally induced bar

» residual rotation = non-monotonic vies gsr profile

Oy, data =

Gy, model
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Internal structure and kinematics of the Sgr remnant

» characteristic S-shape and ~ 45° tilt w.r.t. the orbit extending up to ~ 5 kpc
» X-shaped streamlines of relative velocity (shear and moderate rotation)

» very anisotropic velocity dispersion tensor | to the photometric major axis
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Common features of all successful models

» stellar mass ~ 108 M, total mass (3 — 5) x 108 M, within 5 kpc,
peak circular velocity ~ 20 km/s

» stellar profile more spatially concentrated than total mass profile
> central density < 2.5 x 10" M, /kpc® (below the tidal limit)
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Common features of all successful models

» stellar mass ~ 108 M, total mass (3 — 5) x 108 M, within 5 kpc,
peak circular velocity ~ 20 km/s

v

stellar profile more spatially concentrated than total mass profile
central density < 2.5 x 107 M, /kpc® (below the tidal limit)

v

» prolate cigar-shaped remnant extending up to ~ 5 kpc and tilted at ~ 45° to
the orbit — essential for reproducing the kinematics, particularly the yi/ field

» current state of the remnant — neither too compact nor too fluffy

Limitations
» Sgr stream not fitted by the N-body model (intentionally)
» assumed a particular choice for the Milky Way potential and kept it fixed

» simulation not started from ab initio cosmologically motivated models



Looking into the future

Sgr is completely disrupted
over the next orbit (~ 1 Gyr)
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Looking into the past

Not the first time that a satellite
is devoured by the Milky Way!

Gaia—Enceladus

[Helmi+ 2018]



Looking into the past

Not the first time that a satellite
is devoured by the Milky Way!



Looking into the past

Time: ~ 10 Gyr ago now
Stellar mass: ~ 10° M, ~ 2 x 108 M,
[Mackereth+ 2019; Deason+ 2019] [Niederste-Ostholt+ 2012]
# of globular clusters: ~ 20 >6
[Myeong+ 2018,2019] [Law & Majewski 2010; Bellazzini+ 2020]
metal-rich half of stream; perturbations in
Legacy:

the MW halo the MW disc  [Antoja+ 2018



Summary

» Gaia DR2 made possible a detailed study of our closest satellite
» Present-day structure and kinematics of the remnant is tightly constrained

» Stellar mass is ~ 108 M,
total mass is a factor of few higher

» Sgr remnant was a bound system until
the most recent pericentre passage. ..

» ... butis no more




