
Kinetics for gravity

Eugene Vasiliev

KITP, Santa Barbara

3 June 2024



Gravity vs. plasma

r̈ = −G m1 m2

m1 |r|2
r̈ =

q1 q2

m1 |r|2

single kind of charge opposite charges

equal inertial and gravitating mass different charge/mass ratio

no screening; Jeans length comparable Debye screening length much smaller
to the size of the system than the size of the system

In both cases nλ3 � 1 ⇒ nearly collisionless dynamics;

non-Maxwellian and possibly anisotropic velocity distributions.



Characteristic scales of self-gravitating systems
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galactic nuclei star clusters galaxies

N ∼ 103 − 107 N ∼ 106 − 1011

Size ∼ 1− 10 pc stars: ∼ 0.1− 10 kpc
halo: ∼ 1− 100 kpc

Velocity ∼ 10 km/s ∼ 10− 200 km/s

Dynamical time
τ ≡ (4π G ρ)−1/2

∼ 106 yr ∼ 108 yr

1 pc

1 Myr
≈ 0.98 km/s

︸ ︷︷ ︸
dynamically old

Relaxation time
Trel ∼ Nτ/ ln Λ

∼ 109 − 1010 yr � 1010 yr︸ ︷︷ ︸
thermodynamically evolving



Key features of kinetics of self-gravitating systems
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But: stars don’t move on straight lines ⇒
better use orbits J and locations on the orbit θ as phase-space variables.
(instead of velocity and position as in spatially uniform plasma).
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J = J(x, v; Φ)
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But: stars don’t move on straight lines ⇒
better use orbits J and locations on the orbit θ as phase-space variables.
(instead of velocity and position as in spatially uniform plasma).

Alternative methods for constructing
equilibrium models: ρ(x) + Φ(x) ⇒ f (J)

For a phase-mixed system, f = f (J) only, and could be almost arbitrary.

Solution of the CBE + Poisson equation: ρ =
∫∫∫

f (J) d3v

∇2Φ = 4π G ρ

J = J(x, v; Φ)



Action–angle variables in galactic dynamics
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Typically we consider spherical or axisymmetric potentials.

I radial action Jr ;

I vertical (or polar) action Jz ;

I azimuthal action Jφ = Lz
(conserved component of angular momentum).

Transformation {x, v} ⇔ {J,θ}:
I for spherical potentials – (almost) analytic,

only 1d numerical integrals for Jr ;

I for axisymmetric potentials close to the equatorial plane –
epicyclic approximation (separable motion in R and z);

I —”—, Stäckel approximation (spheroidal coordinate system);

I most general (but tricky to use): ”torus mapping” using Fourier
series for generating functions of the canonical transformation.
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(conserved component of angular momentum).
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Observational developments in recent years
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+
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proper
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O(109) O(108) O(107) O(106)
[credit: R.Hurt]

Available data: significant part of the Galactic disc (∼ few kpc);
central region, outer halo, some satellites...

Challenges: patchy coverage; not all objects have 6d phase-space coords...



Recent discoveries: Galactic assembly history

[Helmi+ 2018] [Belokurov+ 2018]
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bar-induced stripes [Dillamore+ 2023, 2024]

Challenges:
– overlapping debris from multiple progenitors;
– incomplete phase mixing;
– limited spatial coverage;
– blurring of substructures by later perturbations;
– dynamical creation of structures;
– lack of consistent nomenclature...



Recent discoveries: imprint of Galactic bar and spiral arms
Velocity distribution in the equatorial plane (U,V ) contains various structures associated
with resonantly trapped orbits [Dehnen 2000; Quillen & Minchev 2005].

In a more extended region, trapped orbits show up as lines in the Jr − Lz plane
[e.g., Sellwood 2010; Binney 2018; Monari+ 2017, 2019; Trick+ 2019; Hunt+ 2019].

Their location depends on the pattern speed of the bar Ωb and spiral arms Ωs.
A slowing-down bar transports trapped objects outwards [e.g., Dillamore+ 2024]

and creates age-dependent structures in the resonant islands [e.g., Chiba+ 2021].
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Recent discoveries: radial migration and disc heating
Stars do not stay at the same near-circular orbits where they were born due to a
combination of two effects [Sellwood & Binney 2002; Roškar+ 2008; Minchev & Famaey 2010]:

– radial migration (“churning” – change in Lz while conserving Jr );
– heating (“blurring” – diffusion in Jr ).

Mechanisms:
– resonances with the bar and spiral arms;
– molecular clouds and other massive perturbers;
– external perturbations (e.g., satellite flybys).

Churning appears to be much stronger than blurring.

[Frankel+ 2020]



Recent discoveries: vertical perturbations in the Galactic disc

Gaia DR2 [Antoja+ 2018]
[Li & Shen 2019]

Leading theory: ripples after the impact of a mas-
sive satellite (implying Sgr dSph) through the disc
[Widrow+ 2012; Laporte+ 2018,2019; Binney & Schönrich 2018;

Li & Shen 2019; Bland-Hawthorn & Tepper-Garćıa 2021, etc.]

Caveat: Sgr was likely not massive enough at
the time of the previous passage through the disc
(1 Gyr ago) [Vasiliev & Belokurov 2020; Bennett+ 2022].

Counter-caveat: Sgr may have excited long-lived
oscillations in the MW halo, which in turn perturb
the disc [Grand+ 2022].



Recent discoveries: vertical perturbations in the Galactic disc

Gaia DR2 [Antoja+ 2018]

Gaia DR3 [Hunt+ 2022]

two-arm spiral in the inner Galaxy:
breathing perturbation due to the bar?



Recent discoveries: precessing warp in the outer Galactic disc
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[Cabrera-Gadea+ 2024]

The warp is a coherent large-scale vertical perturbation of the disc beyond ∼ 10−12 kpc.

Formation theories:
– impact of satellites (Sgr, LMC);
– misalignment between the disc and the dark halo;
– cold gas accretion from a misaligned direction.

Challenges:
– disagreement in amplitude and precession rate between populations of different ages.



Recent discoveries: LMC–Milky Way encounter

The Large Magellanic Cloud is only 5− 10× less massive than the Milky Way, and just
passed its pericentre at 50 kpc. The LMC-induced perturbation is twofold:

1. Stars in the vicinity of the moving LMC are deflected into a trailing density wake,
creating a dynamical friction force [Chandrasekhar 1942].

2. The two galaxies move around the common centre of mass, but not as rigid bodies.

In the MW-centred reference frame, outer halo appears to move up (dipole perturbation).
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Recent discoveries: LMC–Milky Way encounter

The Large Magellanic Cloud is only 5− 10× less massive than the Milky Way, and just
passed its pericentre at 50 kpc. The LMC-induced perturbation is twofold:

1. Stars in the vicinity of the moving LMC are deflected into a trailing density wake,
creating a dynamical friction force [Chandrasekhar 1942].

2. The two galaxies move around the common centre of mass, but not as rigid bodies.

In the MW-centred reference frame, outer halo appears to move up (dipole perturbation).

N-body sims [Garavito-Camargo+ 2020] perturbation theory [Rozier+ 2022]



Summary

– Many interesting problems in Milky Way dynamics can be addressed
with the methods from kinetic theory

– Degeneracies in explaining individual features⇒ need a holistic view
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[Victor Brauner]


