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Fundamental equations

1. Collisionless Boltzmann equation:
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= 0.

gravitational potential

distribution function

(Assumption: a galaxy is a collisionless system in a steady state)

2. Poisson equation:

∇2Φ(x) = 4π G ρ(x).
density

(Assumption: Newtonian gravity)

3. The link:

ρ(x) =
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d
3
v f (x, v).

(Assumption: self-consistency)
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Ways of solving the equations

1. Collisionless Boltzmann equation:

Jeans theorem states that the DF may depend only on
the integrals of motion

f = f
�
I(x, v)

�
, I = {E , L, . . . }.

depend on the potential Φ
2. Poisson equation:

Φ(x) = −
���

d
3
x
�
G ρ(x�)× 1

|x− x�| .

3. The link:

ρ(x) =
���

d
3
v f (x, v).



Self-consistent models of spherical systems

� Integrals of motion:

energy E = Φ(r) + v
2/2, angular momentum L = |x× v|.

� Gravitational potential:

Φ(x) ≡ Φ(r) = −4πG

�
r
−1

� r

0
dr

� ρ(r �) r � 2 +

� ∞

r
dr

� ρ(r �) r � −1
�
.

� Distribution function:

f (E ) (isotropic) or f (E , L) (general anisotropic);
in the isotropic case

ρ(r) =

� vesc

0
4πv2 dv f (Φ(r) + v

2/2)

=

� 0

Φ(r)
dE 4πf (E )

�
2[E − Φ(r)]



Two possible approaches

1. From ρ to f : first compute Φ(r) and its inverse r(Φ);

ρ(r) =

� 0

Φ(r)
dE 4πf (E )

�
2[E − Φ(r)] =⇒

f (E ) =
d

dE

� 0

E
dΦ

dρ
�
r(Φ)

�

dΦ

1

4π
�

2[E − Φ(r)]

(Eddington inversion), or its generalizations for anisotropic f (E , L)
(Ossipkov–Merritt, Cuddeford, etc.)
Examples: isochrone, Hernquist model, etc.

2. From f to ρ:

1

r2

d

dr

�
r
2 dΦ(r)

dr

�
= 4πG

���
d
3
v f

�
Φ(r) + v

2/2, |x× v|
�

Examples: Plummer, King, lowered isothermal models, etc.



Axisymmetric systems

� Integrals of motion:

E = Φ(R , z) + v
2/2, Lz = R vφ,

third integral I3 =? (known analytically in special cases).

� Gravitational potential:

Φ(R , z) = ? (can be reduced to a 1d integral over ρ(R , z) in
special cases, e.g., for ρ(R2 + z

2/q2) or ρR(R) ρz(z), etc.)

� Distribution function:

f (E , Lz) (two-integral) or f (E , Lz , I3) (general three-integral).



Axisymmetric systems – two approaches

1. From ρ(R , z) to f :

� Compute Φ(R , z);

� Express z as a function of R ,Φ;

� the two-integral f (E , Lz) is obtained by a contour integral

over ρ(R ,Φ) [Hunter&Qian 1993].

2. From f (E , Lz) to Φ and ρ:

Iterative approach [e.g., Prendergast&Tomer 1970]:

� Assume an initial guess for Φ(R , z);

� Compute ρ(R , z) =

���
d
3
v f

�
Φ(R , z) + v

2/2, r vφ
�
;

� Find new Φ(R , z) from the Poisson equation;

� Repeat until convergence.

Generalization to f (E , Lz , I3) – ? (straightforward if we know I3...)



Actions as integrals of motion

� One may use any set of integrals of motion, but actions are
special:

� For bounded multiperiodic motion, actions are defined as

J =
1

2π

�
p dx, where p are canonically conjugate momenta for x.

� Action/angle variables {J,θ} are the most natural way of
describing the motion: from Hamilton’s equations we have

dJi

dt
= −∂H

∂θi
= 0 (actions are integrals of motion), and

dθi
dt

=
∂H

∂Ji
≡ Ωi (angles increase linearly with time);

here H(J) is the Hamilonian and Ω(J) are the frequencies.



Examples of action/angle variables

The meaning of the action/angle variables may vary for different
classes of orbits, but generally describes the extent of oscillation
in a particular direction.



Pros and cons of action/angle variables

+ Most natural description of motion (angles change linearly with
time); once J and Ω have been found, orbit computation is trivial.

+ Possible range for each action variable is [0..∞) or (−∞..∞),
independently of the other ones (unlike E and L, say).

+ Canonical coordinates: the volume of phase space
d
3
x d

3
v = d

3
J d

3θ.

+ Actions are adiabatic invariants (are conserved under slow
variation of potential).

+ Serve as a good starting point in perturbation theory.

— No general way of expressing the Hamiltonian H ≡ Φ(x) + 1
2v

2

in terms of actions (i.e., solving the Hamilton–Jacobi equation).

— Not easy to compute them in a general case.

+ Efficient methods for conversion between {x, v} and {J,θ}
have been developed in the last few years.



“Classical” methods

� Spherical systems:
two of the actions can be taken to be the azimuthal action

Jφ ≡ Lz and the latitudinal action Jϑ ≡ L− |Lz |;
the third one (the radial action) is given by a 1d quadrature:

Jr =
1

π

� rmax

rmin

dr

�
2[E − Φ(r)]− L2/r2,

where rmin, rmax are the peri- and apocentre radii.
Angles are given by 1d quadratures. For special cases (the
isochrone potential, and its limiting cases – Kepler and harmonic
potentials), these integrals are computed analytically.
Note: a related concept in celestial mechanics are the Delaunay variables.

� Flattened axisymmetric systems – the epicyclic approximation:
motion close to the disc plane is nearly separable into the in-plane
motion (Jφ and Jr as in the spherical case) and the vertical
oscillation with a fixed energy Ez in a nearly harmonic potential (Jz).



State of the art: Stäckel fudge

Fact: orbits in realistic axisymmetric galactic potentials are
much better aligned with prolate spheroidal coordinates.

One may explore the assumption that the motion is separable
in these coordinates (λ, ν).
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Stäckel fudge (Binney 2012)

The most general form of potential that satisfies the separability

condition is the Stäckel potential1: Φ(λ, ν) = − f1(λ)− f2(ν)

λ− ν
.

The motion in λ and ν directions, with canonical momenta pλ, pν ,
is governed by two separate equations:

2(λ−∆2)λ p
2
λ =

�
E − L

2
z

2(λ−∆2)

�
λ− [I3 + (λ− ν)Φ(λ, ν)],

2(ν −∆2) ν p2ν =

�
E − L

2
z

2(ν −∆2)

�
ν − [I3 + (ν − λ)Φ(λ, ν)].

Under the approximation that the separation constant I3 is indeed
conserved along the orbit, this allows to compute the actions:

Jλ =
1

π

� λmax

λmin

pλ dλ, Jν =
1

π

� νmax

νmin

pν dν.

1Note that the potential of the Perfect Ellipsoid (de Zeeuw 1985) is of the
Stäckel form, but it is only one example of a much wider class of potentials.



Stäckel fudge in practice
A rather flexible approximation: for each orbit, we have the
freedom of using two functions f1(λ), f2(ν) (directly evaluated
from the actual potential Φ(R , z)) to describe the motion in two
independent directions.
These functions are different for each orbit (implicitly depend on
E , Lz , I3).
Moreover, we may choose the interfocal distance ∆ of the auxiliary
prolate spheroidal coordinate system for each orbit independently.



Accuracy of Stäckel fudge

Accuracy of action conservation using the Stäckel fudge:
� 1% for most disc orbits, � 10% even for high-eccentricity orbits.

But it is “uncontrollable”,
accuracy cannot be systematically improved.

Can we do better?



Other methods for action computation

Yes, actions offer the only systematic method for computing
the integrals of motion in a non-perturbative way.

Canonical transformation between true {J,θ} and “toy” {JT ,θT}
in some simple potential (e.g., isochrone), for which the mapping
between position/velocity and action/angle coordinates is known
(Torus construction – McGill&Binney 1990, McMillan&Binney 2008).

This transformation is described by a generating function S(J,θT ),
which can be expanded into Fourier series in θT ; the accuracy of
this approximation depends on the number of terms in the
expansion.

A global map between toy and true action/angles is obtained by
interpolating the coefficients of the Fourier expansion as functions
of actions – once this map is constructed, the transformations
{J,θ} ⇐⇒ {x, v} are fast and accurate (except near resonances).
[work in progress...]



Models with a prescribed distribution function

Goal: f (J) =⇒ ρ(x)

given a particular expression for the distribution function f (J),
construct the corresponding self-consistent potential/density pair.

� Assume an initial guess for Φ(x);

� Construct the mapping {x, v} =⇒ {J,θ} in this potential;

� Compute ρ(x) =
���

d
3
v f

�
J(x, v)

�
;

� Solve the Poisson equation to find new Φ(x);

� Repeat until convergence.



Advantages of using actions

1. Action/angle variables are canonical =⇒

the total mass of the model is computed trivially

M =

�
f
�
x, v

�
d
3
x d

3
v =

�
f
�
J
�
d
3
J (2π)3,

does not depend on Φ, does not change between iterations.

2. Multicomponent models:

trivial superposition of separate fk(J) without changing
the functional form of each component;

addition of a new component =⇒
adiabatic modification of existing density profiles
(e.g., dark matter halo response to the formation of a baryonic disc).

3. Faster and more robust convergence (∼ 5− 10 iterations).



How to compute the potential in a general case

1. Direct integration:

Φ(x) = −
���

d
3
x
� ρ(x�)× G

|x− x�| .

3. Spherical-harmonic expansion:

Φ(r , θ, φ) =
∞�

l=0

l�

m=−l

Φlm(r)Y
m
l (θ, φ),

Φlm(r) = − 4πG

2l + 1
×

×
�
r
−1−l

� r

0
dr

� ρlm(r
�) r � l+2 + r

l
� ∞

r
dr

� ρlm(r
�) r � 1−l

�
,

ρlm(r) =

� π

0
dθ

� 2π

0
dφ ρ(r , θ, φ)Ym∗

l (θ, φ).



How to compute the potential in a general case

2. Azimuthal-harmonic (Fourier) expansion:

Φ(R , z , φ) =
∞�

m=−∞
Φm(R , z) e

imφ,

ρm(R , z) =
1

2π

� 2π

0
dφ ρ(R , z , φ)e−imφ,

Φm(R , z) = −
��

dR
�
dz

� ρm(R
�, z �)× Ξm(R , z ,R

�, z �),

Ξm(R , z ,R
�, z �) ≡

� ∞

0
dk 2πG Jm(kR) Jm(kR

�) exp(−k |z − z
�|) =

=
2
√
π Γ

�
m + 1

2

�
2F1

�
3
4 + m

2 ,
1
4 + m

2 ; m + 1; ξ−2
�

√
RR � (2ξ)m+1/2 Γ(m + 1)

where ξ ≡ R
2 + R

�2 + (z − z
�)2

2RR � .

analytic expr. for Green’s function:



How to compute the potential in a general case

1. Direct integration:

Φ(x) = −
���

d
3
x
� ρ(x�)× G

|x− x�| .

2. Azimuthal harmonic expansion:

Φ(R , z , φ) =
∞�

m=−∞
Φm(R , z) e

imφ.

3. Spherical harmonic expansion:

Φ(r , θ, φ) =
∞�

l=0

l�

m=−l

Φlm(r)Y
m
l (θ, φ).

4. Basis-set expansion:

Φ(r , θ, φ) =
∞�

n=0

∞�

l=0

l�

m=−l

Φnlm Anl(r)Y
m
l (θ, φ).

(example: self-consistent field method of Hernquist&Ostriker 1992)

interpolated functions



Two types of potential approximations used in models

� for disc-like components – azimuthal-harmonic expansion;

� for spheroidal components – spherical-harmonic expansion.



Gravitational potential extracted from N-body models

The spherical-harmonic and azimuthal-harmonic potential
approximations can also be constructed from N-body models.

Advantages:
fast evaluation, smooth forces, suitable for orbit analysis.

Real N-body model
(from Roca-Fabrega et al. 2013, 2014)

Potential approximation
(suitable for test-particle integrations,

e.g. Romero-Gomez et al. 2011)



Models with prescribed density profile

Goal: ρ(x) =⇒ f (I)

construct a self-consistent model for the given density profile
(possibly with additional kinematic constraints).

Need to somehow invert the integral equation

ρ(x) =
���

d
3
v f

�
I(x, v)

�

Variants of methods:

� Based on N-body models: made-to-measure and alike...

� Based on orbits: Schwarzschild’s orbit-superposition method.

� Based on distribution-function “building blocks”: this work.



Schwarzschild’s orbit-superposition method

Discretize both the density profile and the distribution function:

ρ(x) =⇒ cells of a spatial grid;
mass of each cell is

mc =

���

x∈Vc

ρ(x) d3
x

f (I) =⇒ collection of orbits:

f (I) =
Norb�

k=1

wk δ(I − Ik)

each orbit is a delta-function in the space of integrals

adjustable weight of each orbit



Schwarzschild’s orbit-superposition method

orbits in the model target density

discretized orbit density
(fraction of time tkc that k-th orbit spends in c-th cell)

discretized density
(mass mc in grid cells)

For each c-th cell we require
�

k wk tkc = mc , where wk ≥ 0 is orbit weight



Schwarzschild’s orbit-superposition method

Ncell






Norbit
� �� �

× =
tkc

or
bi
t
w
ei
gh

ts
w
k

ce
ll
m
as
se
s
m

c

Solve the linear system with constraints wk ≥ 0
(linear or non-linear optimization problem)

Importance of regularization:
non-regularized

regularized



Building blocks for distribution function

Same idea: invert the integral equation

ρ(x) =
���

d
3
v f

�
I(x, v)

�

by decomposing f into a sum of building blocks (basis functions):

f (I) =
Nbasis�

k=1

wk fk(I),

computing the projections of all basis functions at a grid of points xc

ρkc ≡
���

d
3
v fk

�
I(xc , v)

�
,

and solving the optimization problem

ρc ≡ ρ(xc) =
Nbasis�

k=1

wk ρkc , wk ≥ 0 , c = 1..Nconstraint,

to find the weights of basis functions wk .



Building blocks for distribution function

Similar approaches suggested previously:

� Dejonghe(1989), Merritt&Saha(1993): fk(E , L) as Fricke components |E |α L−2β ;

� Merritt(1993,1996): histograms (Π-shaped blocks) for f (E , L) or f (E , Lz);

� Kuijken(1994), Pichon&Thiébaut(1998): bilinear interpolation for f (E , Lz);

� Dehnen&Gerhard(1994): Chebyshev polynomial basis for f (E , Lz);

� Magorrian(2014): superposition of multivariate Gaussian ‘blobs’ for f (E , L).

[Merritt 1993] [Kuijken 1994]



Building blocks for interpolation

B-splines of degree N:

flexible choice of grid points, locality, smoothness (increases with N), nonnegativity.



Models with non-parametric distribution function

� f (J) represented as an interpolated 3d function in action space

(tensor product of 1d B-splines);

� weights of basis functions found by solving a linear or quadratic

optimization problem (constraints: values of density at a 3d grid

in space);

� smoothness: choice of degree of B-splines;

� regularization: minimum-curvature condition for the 3d

interpolant (roughness penalty);

� possibility of determining f (J) from an N-body model or from

discrete observational points, using maximum penalized likelihood

method (work in progress..).



Advantages of models based on distribution function

� Clear physical meaning

(localized structures in the space of integrals of motion);

� Easy to compare different models

(how to compare two N-body or N-orbit models?);

� Easy to compare models to discrete observational data;

� Easy to sample particles from the distribution function

(convert to an N-body model);

� Stability analysis

(perturbation theory most naturally formulated in terms of actions);

Caveats:

� Implicitly rely on the integrability of the potential,

ignore the presence of resonant orbit families;

� So far implemented only for axisymmetric models

(not a fundamental limitation).



AGAMA library – Action-based galaxy modeling architecture

� Extensive collection of gravitational potential models

(analytic profiles, azimuthal- and spherical-harmonic expansions);

� Conversion to/from action/angle variables

(fast and accurate method for spherical potentials, Stäckel fudge for

axisymmetric potentials, torus mapping);

� Action-based distribution functions; generation of N-body models

and determination of best-fit parameters of DF and potential;

� Self-consistent multicomponent models with action-based DFs:

(iterative method for f (J) ⇒ ρ(x), non-parametric DF recovery ρ(x) ⇒ f (J));

� Efficient and carefully designed C++ implementation, examples,

Python interface, compatibility with other software such as galpy;

https://github.com/GalacticDynamics-Oxford/Agama

https://github.com/GalacticDynamics-Oxford/Agama


Conclusions

� Advantage of models based on distribution functions;

� Advantage of actions as arguments of distribution functions;

� Two approaches for construction of self-consistent models;

� Software available for the community.

Thank you!
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