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Basic elements of stellar dynamics

Software packages for stellar dynamics

density and potential profiles:
collection of analytic models
solution of the Poisson equation for
an arbitrary p(r) or an N-body snapshot

numerical integration of orbits

conversion between position /velocity and
action/angle variables

distribution functions and their moments
construction of equilibrium models
modelling of tidal streams

integration with astropy
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Galpy
[Bovy 2015]
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Gala
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Cython

Agama
[Vasiliev 2019]
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Gravitational potentials
Commonly used analytic potential—density pairs: Plummer, NFW,
MiyamotoNagai, Dehnen, Ferrers ...

If one needs more flexibility, there are three general-purpose Poisson solvers:

0. Direct mtegratlon e
/// 2 p(x e (impractical)
“=x]

1. Azimuthal-harmonic expansion ( ylSpllne)

O(R,z,0) = Y (R z)e™.

m=—0o0

2. Spherical-harmonic expansion (Multipole): interpolated functions

®(r,0,¢) = ZZcb,mr ™0, $).
=0 m=—I
3. BasisSet expansion (a.k.a. self con5|stent field method of Hernquist&Ostriker 1992):

(r,0,¢) = ZZ Z D i An(r) Y(6, 6).

n=0 /=0 m=—/



Gravitational potentials

Both BasisSet and Multipole use spherical-harmonic expansion to
represent the angular dependence of the potential, but the radial part is
either expanded into a sum of basis function or represented by quintic
splines.

In practice, Multipole is more computationally efficient and more accurate
(at least for analytic density profiles); BasisSet is kept mainly for
compatibility with other packages.

Spherical harmonics are poorly suited for highly flattened systems; a better
alternative is the CylSpline potential, which uses Fourier expansion for the
azimuthal ¢ angle, but represents each Fourier term directly on a grid in
the meridional plane R, z. It is more expensive to construct than
Multipole, but is similarly efficient to evaluate.

These general-purpose Poisson solvers can be initialized from arbitrary
user-defined density functions or N-body snapshots.



Gravitational potentials

» for spheroidal density profiles — spherical-harmonic expansion (Multipole).

» for disk-like density profiles — azimuthal-harmonic expansion (CylSpline).
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Gravitational potentials: example 1
User-defined density model: a boxy bar  p(x,y,z) = po exp ( — d*/"),
where d = [(x/a)* + (y/b)* + (z/c)*] YK is the generalized ellipsoidal
radius (an ordinary ellipsoid has k = 2), and n is the Einasto index.
def dens_bar(xyz):
X,yY,z = abs(xyz).T

r = ((x/a)*xk + (y/b)*xk + (z/c)*x*xk)**x(1./k)
return rho@ *x numpy.exp(-r*x(1./n))

pot_bar = agama.Potential (type=’Multipole’, density=dens_bar,
Imax=20, mmax=10)
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Gravitational potentials: example 1

Create an N-body snapshot from the density profile
(only positions and masses, no velocities):

pos, mass = agama.Density(dens_bar).sample (1000000)
And then feeding this snapshot as input to the Multipole potential:

pot_bar_nbody = agama.Potential (type="Multipole’,
particles=(pos, mass), symmetry=’triaxial’, lmax=20, mmax=10)
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Gravitational potentials: example 2

One may construct a smooth potential approximation with a desired level
of symmetry from an N-body simulation (or even a time-dependent
potential from a series of snapshots) and use it to integrate and analyze
orbits, e.g., in a barred galaxy.

original snapshot triaxial bisymmetric



Action—angle variables

Most orbits in axisymmetric potentials
look like "rectangular tori” with

three parameters defining the shape:
Jy = L, = Ry Veire(Ry) determines

the overall size of the orbit (“guiding radius” R;);
Jr determines the extent of radial oscillations;

J, does the same for vertical oscillations.

For orbits with low eccentricity and inclination
(Jr> < |Js]), the epicyclic approximation gives

Rapo
Jr ~ %% Ve dR = %/R V2[E — ®(R)] — (L/R)? dR.

peri

The Stackel approximation [Binney 2012] is the state-of-
the-art method for generic axisymmetric potentials,
and delivers percent-level accuracy for most orbits.

Corresponding phase angles 0, r , determine the lo-
cation on the orbit.
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Distribution functions

DF f(x,v) offers a complete description of the stellar population:
> density p(x) = /f(x,v) d3v,

1
» mean velocity V(x) = — /v f(x,v)d%v,

p(x)

— 1
> second moment of velocity vi(x) = Fe) / v; vj f(x,v) dv,
p(x

velocity dispersion tensor o3 = v; —V; 7;,

0.01

» more generally, velocity distribution
at a given point

1
f(vi; x) = (%)

(note that it may be rather non-Gaussian!).

0.008]

f(X, V) dv, dvs o

flv)

0.004]

0.002

Jeans' theorem: in a steady state, DF must be

a function of integrals of motion f(Z(x,v; ®)). oo —w———



Distribution functions

Correspondence between DF and density profile:

p(x) :/f(I(x,v; P)) d*v.

In spherical systems: x = r, T ={E,L L.}.

In axisymmetric systems: x = {R,z}, Z = {E,L,, 3} or {Jg, Jp, J.}.

Whatever the geometry, there is more freedom in DF than in the density
profile = DF is non-unique.

To derive f from p and @, need to assume a specific form of the DF.

E.g. for spherical systems: Cuddeford—Osipkov—Merritt invz?gsion:

f(E,L) = L7 f5(Q), where Q=E +L?/(2r). <

S}
N 05k

Velocity anisotropy [ changes with radius from [y to 1. --

Example:

L L
0.1 1 10

df = agama.DistributionFunction(type="QuasiSpherical”,
density=dens, potential=pot, beta0=-0.3, r_a=1)



Distribution functions for axisymmetric systems
For non-spherical systems, one could use f(E, L, L), but action-based DFs
f(J) offer some practical advantages (e.g., their definition does not depend
on &, although the kinematics of course does).

Example of a halo-type DF [posti+ 2015]:
r r-B
FJ) = A1+ (Jo/h(I)"" [1+ (g(3)/40)") B,
where h(J), g(J) are some linear combinations of actions at small and large radii.

df = agama.DistributionFunction(type="DoublePowerLaw",
J0=1.0, slopeIn=1.0, slopeOut=5.0, steepness=1.0, norm=1.0,
coefJrin=0.8, coefJzIn=1.5, coefJrOut=0.9, coefJzOut=1.6)
The density and kinematics produced by a DF depend on the potential, but
generally these systems can be made flattened in z, radially or tangentially
anisotropic, and rotating.
Quasi-isothermal DFs [Binney & Mcwmillan 2011] produce disk-like systems with
nearly-exponential surface density X(R) ~ ¥ exp(—R/Ru4isk), constant
scaleheight hgisk and radial velocity dispersion og(r) ~ oro exp(—R/R,.r):

df = agama.DistributionFunction(type="Quasilsothermal”,
Sigma0=1.0, Rdisk=1.0, hdisk=0.1, sigmaR@=0.5, RsigmaR=2.5)



Using distribution functions

A combination of a DF and a potential is used to compute DF moments
(p, Vi, Vi), marginalized values over some missing dimensions
(e.g., projected DF #(x,y, v,) = [[[ f(J(x,v; ®))dv,dv, dz),
velocity distributions f(x, v;), or drawing samples from the DF:

galmod = agama.GalaxyModel (pot, df)

rho, meanv, sigma = galmod.moments(xyz, dens=True, vel=True, vel2=
dfproj = galmod.projectedDF (xyvz)

fvR, fvphi, fvz = galmod.vdf(xyz)

Xv, m = galmod.sample (1000000)
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Example application

Inferring the gravitational potential of dwarf galaxies
from the kinematics of stellar tracers

(which have negligible mass).

Given Ng.s measurements of x, y and v, the
likelihood of a model specified by a potential ®(r; [¢)
and DF f(Z; fr) with some parameters (o, O is

=" Inf(Z(x,vi; 9)).

A comprehensive test on mock data (" Gaia Challenge”)
[Read+ 2021] demonstrates good accuracy of DF models.

In this example | used both 7(J) and f(E, L) construc-
ted from ® and p, but the potential was specified
independently from the DF (i.e. not self-consistently).
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Distribution functions and self-consistent models

One may start with f and determine the corresponding p and .

A general DF f(Z) is specified in terms of integrals of motion in the given potential
Z(x,v; ®). To compute the density p(x) generated by this DF, one needs to know
®(x), but in the gravitationally self-consistent case, ® is determined by p via the Poisson
equation — thus we have a circular dependency.

Such models are constructed by the iterative approach [Kuijken & Dubinski 1995; Widrow-+
2005], which works best for action-based DFs [Binney 2014; Piffl+ 2015; Binney & Vasiliev 2022]:

1. assume f(Z) and _—— 2. repeat
an initial guess for ¢ establish Z(x, v; )

compute p(x) =

[ff B f(Txv) O \

update ®(x) from 3. enjoy!
the Poisson equation



Example application

Global model of the Milky Way specified by several disk-like DFs and constrained
by velocity distributions of Gaia DR2 stars with 6d phase-space coordinates
[Binney & Vasiliev 2022].
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Schwarzschild’s orbit-superposition method

Introduced by Schwarzschild (1979) as a practical approach
for constructing self-consistent triaxial models with prescribed p(x) < ®(x).

mtegrals of motion

To invert the equation p(x /// I[x v | ®]) dv,

discretize both the density profile and the distribution function:

p(x) = cells of a spatial grid;

mass of each cell is M, = /// p(x) d>x;

f(Z) = collection of orbits with unknown weights:

orb

Z Wi I Ik

& each orbit is a delta-function in the space of integrals of motion
adjustable weight of each orbit [to be determined]




Schwarzschild’s orbit-superposition method: self-consistency

orbits in the model target density

discretized orbit density discretized density
(fraction of time t). that k-th orbit spends in c-th cell) (mass V. in grid cells)

For each c-th cell we require >, wy ti,c = M., where wy, > 0 is orbit weight



Schwarzschild’s orbit-superposition method: fitting procedure
» Assume some potential ®(x)
(e.g., from the deprojected luminosity profile plus parametric DM halo or SMBH)

» Construct the orbit library in this potential:
for each k-th orbit, store its contribution to the discretized density profile

tie, € = 1..Nee and to the kinematic observables wy,, n = 1..Nyps

» Solve the constrained optimization problem to find orbit weights w;:

Nobs Norb 2
Ce _1 Wy Ugp — U
minimize x> + S = E 2 T ]+ S({wm})
n=1 n
subject to w, >0, k =1..Nyp,
observational constraints
Norb
E Wi tie = M., c= 1. N their uncertainties
k=1 T density constraints (cell masses)

> Repeat for different choices of potential and find the one that has lowest )2



Schwarzschild’s orbit-superposition method: fitting procedure

Solve the linear system with non-negativity constraints on the solution vector wy > 0
(linear or non-linear optimization problem)

N orbit
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Example application
Model of an edge-on SO galaxy FCC 170 constrained by MUSE IFU kinematics

Observations Model (Schwarzschild) Difference ,
20
< 48 ~1[] o >
3 40 KW g 10 1
g ] = 4
5 32 ¢ s 0 0
> 24 0 >0 | -1
1.6 __q X?=1722.21 -2
: -20 _3
180 3
— 20
3 120 0 g 2
] 60 E 8 10 1
s o S5 o 0
= -60 — >_10 -1
-120 © x?=11766.5 -2
-180 -20 -3
_ 180 o o 3
g 150 i 3 2
] 120 >~ 8 10 1
5 90 E 5 o0 0
= 60 =<, >_10 -1
30 o X*=10113.2 -2
0 -20 -3
- 0.16 — 20 g
S S
b 0.08 2 10 1
o o g
& 0.00 & 5 0 0
> -0.08 >_10 -1
2 - 8843.41 -2
-0.16 20X -
S 0.16 — 20 g
S S
& 0.08 2 10 1
£ ] W 5 5
) 0.00 3 & 0 0
- 008 10 2 =6126.12 :;
-0.16 _po | X 6126 -
-60 -40 -20 0 20 40 -60 -40 -20 O 20 40 -60 -40 -20 0 20 40

x [arcsec] x [arcsec] X [arcsec]



Example application
Model of an edge-on SO galaxy FCC 170 constrained by MUSE IFU kinematics

Observations Model (DF-based) Difference ,
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Summary

Agama is a versatile toolbox for stellar dynamics catering to many needs:
» Extensive collection of gravitational potential models
(analytic profiles, azimuthal- and spherical-harmonic expansions)
constructed from smooth density profiles or N-body snapshots;
Conversion to/from action/angle variables;
Self-consistent multicomponent models with action-based DFs;
Schwarzschild orbit-superposition models;

Generation of initial conditions for N-body simulations;

vVvYvyyvyy

Various math tools: 1d,2d,3d spline interpolation, penalized spline fitting and density

estimation, multidimensional sampling;

v

Efficient and carefully designed C++ implementation, examples, Python
and Fortran interfaces, plugins for Galpy, Gala, NEMO, AMUSE.

https://github.com/GalacticDynamics-Oxford/Agama


https://github.com/GalacticDynamics-Oxford/Agama

