
Stellar-dynamical modelling with

Eugene Vasiliev

Institute of Astronomy, Cambridge

29 November 2022

Basic elements of stellar dynamics

Software packages for stellar dynamics Galpy Gala Agama
[Bovy 2015] [Price-Whelan 2017] [Vasiliev 2019]

density and potential profiles:
collection of analytic models + + +
solution of the Poisson equation for + + +
an arbitrary ρ(r) or an N-body snapshot

numerical integration of orbits + + +

conversion between position/velocity and
action/angle variables

+ + +

distribution functions and their moments + - +

construction of equilibrium models - - +

modelling of tidal streams - + -

integration with astropy + + -

language Python, C Cython C++, Python

Gravitational potentials
Commonly used analytic potential–density pairs: Plummer, NFW,

MiyamotoNagai, Dehnen, Ferrers . . .

If one needs more flexibility, there are three general-purpose Poisson solvers:

0. Direct integration:

Φ(x) = −
∫∫∫

d3x ′ ρ(x′)× G

|x− x′| .

1. Azimuthal-harmonic expansion (CylSpline):

Φ(R , z , φ) =
∞∑

m=−∞

Φm(R , z) eimφ.

2. Spherical-harmonic expansion (Multipole):

Φ(r , θ, φ) =
∞∑
l=0

l∑
m=−l

Φlm(r)Y m
l (θ, φ).

3. BasisSet expansion (a.k.a. self-consistent field method of Hernquist&Ostriker 1992):

Φ(r , θ, φ) =
∞∑
n=0

∞∑
l=0

l∑
m=−l

Φnlm Anl(r)Y m
l (θ, φ).

(impractical)

interpolated functions

Gravitational potentials

Both BasisSet and Multipole use spherical-harmonic expansion to
represent the angular dependence of the potential, but the radial part is
either expanded into a sum of basis function or represented by quintic
splines.

In practice, Multipole is more computationally efficient and more accurate
(at least for analytic density profiles); BasisSet is kept mainly for
compatibility with other packages.

Spherical harmonics are poorly suited for highly flattened systems; a better
alternative is the CylSpline potential, which uses Fourier expansion for the
azimuthal φ angle, but represents each Fourier term directly on a grid in
the meridional plane R , z . It is more expensive to construct than
Multipole, but is similarly efficient to evaluate.

These general-purpose Poisson solvers can be initialized from arbitrary
user-defined density functions or N-body snapshots.

Gravitational potentials

I for spheroidal density profiles – spherical-harmonic expansion (Multipole).

I for disk-like density profiles – azimuthal-harmonic expansion (CylSpline).

0 5 10 15 20
R

5

0

5

10

15

z

0 5 10 15 20
R

5

0

5

10

15

z

CylSpline Multipole

Gravitational potentials: example 1
User-defined density model: a boxy bar ρ(x , y , z) = ρ0 exp

(
− d1/n

)
,

where d ≡
[
(x/a)k + (y/b)k + (z/c)k

]1/k
is the generalized ellipsoidal

radius (an ordinary ellipsoid has k = 2), and n is the Einasto index.

def dens_bar(xyz):
x,y,z = abs(xyz).T
r = ((x/a)**k + (y/b)**k + (z/c)**k)**(1./k)
return rho0 * numpy.exp(-r**(1./n))

pot_bar = agama.Potential(type=’Multipole ’, density=dens_bar ,
lmax=20, mmax =10)

Gravitational potentials: example 1

Create an N-body snapshot from the density profile
(only positions and masses, no velocities):

pos , mass = agama.Density(dens_bar). sample (1000000)

And then feeding this snapshot as input to the Multipole potential:

pot_bar_nbody = agama.Potential(type=’Multipole ’,
particles =(pos , mass), symmetry=’triaxial ’, lmax=20, mmax =10)

Gravitational potentials: example 2

One may construct a smooth potential approximation with a desired level
of symmetry from an N-body simulation (or even a time-dependent
potential from a series of snapshots) and use it to integrate and analyze
orbits, e.g., in a barred galaxy.

1050510

10

5

0

5

10

1050510

10

5

0

5

10

1050510

10

5

0

5

10

original snapshot triaxial bisymmetric

Action–angle variables

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

0.0 0.5 1.0
2.0

1.5

1.0

0.5

Φ
(R

)
+
p

2 φ
/(

2R
2)

0.0 0.5 1.0

R
0.020.04

Φ(R,z)−Φ(R,0)

0.5

0.0

0.5

z

m
e
ri

d
io

n
a
l
p
la

n
e

e
q
u
a
to

ri
a
l
p
la

n
e

Most orbits in axisymmetric potentials
look like ”rectangular tori” with
three parameters defining the shape:
Jφ ≡ Lz = Rg vcirc(Rg) determines
the overall size of the orbit (“guiding radius” Rg);
JR determines the extent of radial oscillations;
Jz does the same for vertical oscillations.

For orbits with low eccentricity and inclination
(JR,z � |Jφ|), the epicyclic approximation gives

JR ≈
1

2π

∮
VR dR =

1

π

∫ Rapo

Rperi

√
2
[
E − Φ(R)

]
− (Lz/R)2 dR.

The Stäckel approximation [Binney 2012] is the state-of-
the-art method for generic axisymmetric potentials,
and delivers percent-level accuracy for most orbits.

Corresponding phase angles θφ,R,z determine the lo-
cation on the orbit.

Distribution functions

200 100 0 100 200 300
velocity

0.000

0.002

0.004

0.006

0.008

0.010

f(
v
)

DF f (x, v) offers a complete description of the stellar population:

I density ρ(x) =

∫
f (x, v) d3v ,

I mean velocity v(x) =
1

ρ(x)

∫
v f (x, v) d3v ,

I second moment of velocity v 2
ij (x) =

1

ρ(x)

∫
vi vj f (x, v) d3v ,

velocity dispersion tensor σ2
ij ≡ v 2

ij − vi vj ,

I more generally, velocity distribution
at a given point

f(v1; x) =
1

ρ(x)

∫
f (x, v) dv2 dv3

(note that it may be rather non-Gaussian!).

Jeans’ theorem: in a steady state, DF must be
a function of integrals of motion f

(
I(x, v; Φ)

)
.

Distribution functions

Correspondence between DF and density profile:

ρ(x) =

∫
f
(
I(x, v; Φ)

)
d3v .

In spherical systems: x⇒ r , I ⇒ {E , L, Lz}.
In axisymmetric systems: x⇒ {R , z}, I ⇒ {E , Lz , I3} or {JR , Jφ, Jz}.
Whatever the geometry, there is more freedom in DF than in the density
profile =⇒ DF is non-unique.

To derive f from ρ and Φ, need to assume a specific form of the DF.

0.1 1 10

r/ra

0.5

0.0

0.5

1.0

β
≡

1
−
σ

2 t
/(

2σ
2 r

)

β0

E.g. for spherical systems: Cuddeford–Osipkov–Merritt inversion:

f (E , L) = L−2β0 fQ(Q), where Q ≡ E + L2/(2r 2
a).

Velocity anisotropy β changes with radius from β0 to 1.

Example:

df = agama.DistributionFunction(type="QuasiSpherical",
density=dens , potential=pot , beta0=-0.3, r_a=1)

Distribution functions for axisymmetric systems
For non-spherical systems, one could use f (E , L, Lz), but action-based DFs
f (J) offer some practical advantages (e.g., their definition does not depend
on Φ, although the kinematics of course does).

Example of a halo-type DF [Posti+ 2015]:
f (J) = A

[
1 +

(
J0/h(J)

)η]Γ/η [
1 +

(
g(J)/J0

)η](Γ−B)/η
,

where h(J), g(J) are some linear combinations of actions at small and large radii.

df = agama.DistributionFunction(type="DoublePowerLaw",
J0=1.0, slopeIn =1.0, slopeOut =5.0, steepness =1.0, norm =1.0,
coefJrIn =0.8, coefJzIn =1.5, coefJrOut =0.9, coefJzOut =1.6)

The density and kinematics produced by a DF depend on the potential, but
generally these systems can be made flattened in z , radially or tangentially
anisotropic, and rotating.

Quasi-isothermal DFs [Binney & McMillan 2011] produce disk-like systems with
nearly-exponential surface density Σ(R) ≈ Σ0 exp(−R/Rdisk), constant
scaleheight hdisk and radial velocity dispersion σR(r) ≈ σR,0 exp(−R/Rσ,R):

df = agama.DistributionFunction(type="QuasiIsothermal",
Sigma0 =1.0, Rdisk =1.0, hdisk =0.1, sigmaR0 =0.5, RsigmaR =2.5)

Using distribution functions

A combination of a DF and a potential is used to compute DF moments
(ρ, v i , vivj), marginalized values over some missing dimensions

(e.g., projected DF f̂ (x , y , vz) =
∫∫∫

f
(
J(x, v; Φ)

)
dvx dvy dz),

velocity distributions f (x, vi), or drawing samples from the DF:

galmod = agama.GalaxyModel(pot , df)
rho , meanv , sigma = galmod.moments(xyz , dens=True , vel=True , vel2=True)
dfproj = galmod.projectedDF(xyvz)
fvR ,fvphi ,fvz = galmod.vdf(xyz)
xv, m = galmod.sample (1000000)

300 200 100 0 100 200 300

 vR

10-6

10-5

10-4

10-3

10-2
f(vR)

σR =20

σR =40

σR =80

200 100 0 100 200 300 400

 vφ

10-6

10-5

10-4

10-3

10-2
f(vφ)

ci
rc

u
la

r
v
e
lo

ci
ty

σφ =15

σφ =31

σφ =72

Gaussian

300 200 100 0 100 200 300

 vz

10-6

10-5

10-4

10-3

10-2
f(vz)

σz =20

σz =40

σz =80

Example application

Inferring the gravitational potential of dwarf galaxies
from the kinematics of stellar tracers
(which have negligible mass).
Given Nstars measurements of x , y and vlos, the
likelihood of a model specified by a potential Φ(r; βΦ)
and DF f (I; βf) with some parameters βΦ, βf is

lnL =
∑Nstars

i=1
ln f
(
I(xi , vi ; Φ)

)
.

A comprehensive test on mock data (”Gaia Challenge”)
[Read+ 2021] demonstrates good accuracy of DF models.

10�1 100

r [kpc]

�1.0

�0.5

0.0

0.5

1.0

�̃

10�1 100

r [kpc]

106

107

108

109

1010

⇢
[M

�
kp

c�
3]

R1/2

True
GravSphere
DiscreteJAM
MAMPOSSt
Agama f (J)

Agama f (E)

10�1 100

r [kpc]

�1.0

�0.5

0.0

0.5

1.0

�̃

10�1 100

r [kpc]

106

107

108

109

1010

⇢
[M

�
kp

c�
3]

R1/2

True
GravSphere
DiscreteJAM
MAMPOSSt
Agama f (J)

Agama f (E)

PlumCuspOM-10000PlumCuspOM-1000

In this example I used both f (J) and f (E , L) construc-
ted from Φ and ρ, but the potential was specified
independently from the DF (i.e. not self-consistently).

Distribution functions and self-consistent models

One may start with f and determine the corresponding ρ and Φ.

A general DF f (I) is specified in terms of integrals of motion in the given potential
I(x, v; Φ). To compute the density ρ(x) generated by this DF, one needs to know
Φ(x), but in the gravitationally self-consistent case, Φ is determined by ρ via the Poisson
equation – thus we have a circular dependency.

Such models are constructed by the iterative approach [Kuijken & Dubinski 1995; Widrow+

2005], which works best for action-based DFs [Binney 2014; Piffl+ 2015; Binney & Vasiliev 2022]:

1. assume f (I) and
an initial guess for Φ

2. repeat
establish I(x, v; Φ)

compute ρ(x) =∫∫∫
d3v f

(
I(x, v)

)
update Φ(x) from
the Poisson equation

converged?
no yes

3. enjoy!

Example application

Global model of the Milky Way specified by several disk-like DFs and constrained
by velocity distributions of Gaia DR2 stars with 6d phase-space coordinates
[Binney & Vasiliev 2022].

Schwarzschild’s orbit-superposition method

Introduced by Schwarzschild (1979) as a practical approach
for constructing self-consistent triaxial models with prescribed ρ(x)⇔ Φ(x).

To invert the equation ρ(x) =

∫∫∫
f
(
I [x, v | Φ]

)
d3v,

discretize both the density profile and the distribution function:

ρ(x) =⇒ cells of a spatial grid;

mass of each cell is Mc =

∫∫∫
x∈Vc

ρ(x) d3x ;

f (I) =⇒ collection of orbits with unknown weights:

f (I) =

Norb∑
k=1

wk δ(I − Ik)

integrals of motion

each orbit is a delta-function in the space of integrals of motion

adjustable weight of each orbit [to be determined]

Schwarzschild’s orbit-superposition method: self-consistency

orbits in the model target density

discretized orbit density
(fraction of time tkc that k-th orbit spends in c-th cell)

discretized density
(mass Mc in grid cells)

For each c-th cell we require
∑

k wk tkc = Mc , where wk ≥ 0 is orbit weight

Schwarzschild’s orbit-superposition method: fitting procedure

I Assume some potential Φ(x)
(e.g., from the deprojected luminosity profile plus parametric DM halo or SMBH)

I Construct the orbit library in this potential:
for each k-th orbit, store its contribution to the discretized density profile

tkc , c = 1..Ncell and to the kinematic observables ukn, n = 1..Nobs

I Solve the constrained optimization problem to find orbit weights wk :

minimize χ2 + S ≡
Nobs∑
n=1

(∑Norb

k=1 wk ukn − Un

δUn

)2

+ S
(
{wk}

)
subject to wk ≥ 0, k = 1..Norb,

Norb∑
k=1

wk tkc = Mc , c = 1..Ncell

I Repeat for different choices of potential and find the one that has lowest χ2

regularization term

observational constraints

their uncertainties

density constraints (cell masses)

Schwarzschild’s orbit-superposition method: fitting procedure

×

×

=

ce
ll

m
a
ss

e
s

M
c

ki
n
e
m

a
ti

c
co

n
st

ra
in

ts
 U

n

o
rb

it
 w

e
ig

h
ts

 w
k

0

Norbit

Ncell

Nobs

tkc

ukn

density matrix

kinematics matrix

Solve the linear system with non-negativity constraints on the solution vector wk ≥ 0

(linear or non-linear optimization problem)

Example application
Model of an edge-on S0 galaxy FCC 170 constrained by MUSE IFU kinematics

20

10

0

10

20

 y
 [

a
rc

se
c]

Observations Model

1.6

2.4

3.2

4.0

4.8

lo
g

10
(Σ

)

20

10

0

10

20

 y
 [

a
rc

se
c]

Difference

χ2 = 1722. 21
3
2
1
0
1
2
3

20

10

0

10

20

 y
 [

a
rc

se
c]

180
120
60

0
60
120
180

v 0
[k

m
/
s]

20

10

0

10

20

 y
 [

a
rc

se
c]

χ2 = 11766. 5
3
2
1
0
1
2
3

20

10

0

10

20

 y
 [

a
rc

se
c]

0
30
60
90
120
150
180

σ
[k

m
/
s]

20

10

0

10

20

 y
 [

a
rc

se
c]

χ2 = 10113. 2
3
2
1
0
1
2
3

20

10

0

10

20

 y
 [

a
rc

se
c]

0.16

0.08

0.00

0.08

0.16

h
3

20

10

0

10

20

 y
 [

a
rc

se
c]

χ2 = 8843. 41
3
2
1
0
1
2
3

60 40 20 0 20 40
x [arcsec]

20

10

0

10

20

 y
 [

a
rc

se
c]

60 40 20 0 20 40
x [arcsec]

0.16

0.08

0.00

0.08

0.16

h
4

60 40 20 0 20 40
x [arcsec]

20

10

0

10

20

 y
 [

a
rc

se
c]

χ2 = 6126. 12
3
2
1
0
1
2
3

(Schwarzschild)

Example application
Model of an edge-on S0 galaxy FCC 170 constrained by MUSE IFU kinematics

20

10

0

10

20

 y
 [

a
rc

se
c]

Observations Model

0.0

0.8

1.6

2.4

3.2

lo
g

10
(Σ

)

20

10

0

10

20

 y
 [

a
rc

se
c]

Difference

χ2 = 2158. 72
3
2
1
0
1
2
3

20

10

0

10

20

 y
 [

a
rc

se
c]

180
120
60

0
60
120
180

v 0
[k

m
/
s]

20

10

0

10

20

 y
 [

a
rc

se
c]

χ2 = 34659
3
2
1
0
1
2
3

20

10

0

10

20

 y
 [

a
rc

se
c]

0
30
60
90
120
150
180

σ
[k

m
/
s]

20

10

0

10

20

 y
 [

a
rc

se
c]

χ2 = 13065
3
2
1
0
1
2
3

20

10

0

10

20

 y
 [

a
rc

se
c]

0.16

0.08

0.00

0.08

0.16

h
3

20

10

0

10

20

 y
 [

a
rc

se
c]

χ2 = 11434. 4
3
2
1
0
1
2
3

60 40 20 0 20 40
x [arcsec]

20

10

0

10

20

 y
 [

a
rc

se
c]

60 40 20 0 20 40
x [arcsec]

0.16

0.08

0.00

0.08

0.16

h
4

60 40 20 0 20 40
x [arcsec]

20

10

0

10

20

 y
 [

a
rc

se
c]

χ2 = 8958. 8
3
2
1
0
1
2
3

(DF-based)

Summary

Agama is a versatile toolbox for stellar dynamics catering to many needs:

I Extensive collection of gravitational potential models

(analytic profiles, azimuthal- and spherical-harmonic expansions)

constructed from smooth density profiles or N-body snapshots;

I Conversion to/from action/angle variables;

I Self-consistent multicomponent models with action-based DFs;

I Schwarzschild orbit-superposition models;

I Generation of initial conditions for N-body simulations;

I Various math tools: 1d,2d,3d spline interpolation, penalized spline fitting and density

estimation, multidimensional sampling;

I Efficient and carefully designed C++ implementation, examples, Python

and Fortran interfaces, plugins for Galpy, Gala, NEMO, AMUSE.

https://github.com/GalacticDynamics-Oxford/Agama

https://github.com/GalacticDynamics-Oxford/Agama

