an observational and modelling perspective
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Observational facilities:
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Measurements:

distance, velocity, chemistry, stellar parameters; density and kinematic distributions . ..

Modelling approaches:
Jeans equations, distribution functions, orbit- and particle-based models, stellar streams,
non-equilibrium effects

Objectives:

gravitational field of the Milky Way;
origin and properties of different dynamical components



Distance measurement
Gaia provides 5d astrometric data for ~ 1.5 x 109 stars, but. . .
measured parallax w ~ N (1/D+wp, €z), with the zero-point 4,
wp =~ —0.01 mas varying across the sky and CMD, and mea-
surement uncertainty becoming too large beyond a few kpc. 15
Cutting the catalogue on the “signal-to-noise ratio” w/e, in-

troduces biases [Luri+ 2018] and dramatically reduces the number
of stars.
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Distance measurement

Of course, in many applications one may need only the brighter
stars, whose parallaxes are more precise, but even for G < 18.5

most stars have w/e, < 5.

systematic error:
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Distance measurement
However, when combining parallax with photometry, one can
hope to achieve much better precision especially for faint stars.

StarHorse [Anders+ 2022] is one of several alternative catalogues,
but is still based on EDR3 astrometry.

Gaia DR3 itself contains a distance column, but it comes with
a number of caveats and can only be trusted up to a few kpc.
Several groups declared intent to provide alternative and better

calibrated distance catalogues, using BP—RP spectra.
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Distance measurement

On the other hand, if one considers the Gaia RVS catalogue
(G < 16), parallaxes are mostly precise enough, and additional
cut on S/N does not significantly reduce the sample size.

Of course, it is still limited to a few kpc...
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Spectroscopic surveys

number of stars in common [thousands]
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Sky-plane velocity measurement
PM uncertainty [mas/yr]
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Sky-plane velocity measurement
PM uncertainty [mas/yr]
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Sky-plane velocity measurement

V4 D
1km/s " 1mas/yr 1kpc

In general, the velocity uncertainty
has contribution from both PM and
distance uncertainties:
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If distance is inferred from photo-
metry with a relative uncertainty
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(e.g., for RR Lyrae n ~ 0.1):
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dominates if D 2 25 kpc
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Density profile measurement

...is much more difficult than
just "counting the stars”:

one needs to account for their
luminosity function, spatial and
magnitude coverage of the sur-
vey and various other biases.
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Density profile measurement

The entire Milky Way contains ~ 10! stars, but the vast majority of them are too faint

to be observed (at least by Gaia).
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Density profile measurement

The selection function of a survey is the probability that a star with given properties (e.g.,
position «,d and apparent magnitude G) enters the catalogue (see Everall & Das 2020,
Rix+ 2022 for a general discussion). For Gaia DR2, the selection function was derived in a
series of papers by Boubert & Everall, and the GaiaUnlimited collaboration is developing
a toolbox for the latest and future data releases.

The photometric catalogue is nearly complete at G < Gggo, (v, 8) < 21.
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https://gaia-unlimited.org/

Density profile measurement

If we assume the selection function to be known, then the parameters of the density
distribution can be optimized to maximize the likelihood of observing the given catalogue.

In reality, the dust extinction limits the observable volume even further, but the general
problem of simultaneously inferring both the 3d density profile and the 3d extinction
map is extremely challenging!
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Density profile measurement
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Basics of dynamical modelling

Goal: determine the mass distribution of a stellar system from the kinematics
of some tracer population(s), whose distribution function f(x, v, t) satisfies
the collisionless Boltzmann equation:

Of (x,v, t) v Of(x,v,t)  0P(x,t) Of(x,v, t) 0
ot ox Ox o

Potential < mass distribution

not measured directly on human timescales

In order to infer anything about the potential from a time-dependent DF,
need to make further assumptions about the initial state of the system, e.g.,
that the stars belong to a single stream or were perturbed from an equilibrium

configuration in a specific way, etc.



Basics of dynamical modelling

Goal: determine the mass distribution of a stellar system from the kinematics
of some tracer population(s), whose distribution function f(x, v, t) satisfies
the collisionless Boltzmann equation:
y of(x,v ) 0®(x ) of(x,v )
ox Ox ov

\3D

Steady-state assumption = Jeans theorem: /(want to infer)

Z(x,v; <D
3D - 6D-/ \
(observed)

integrals of motion (< 3D?), eg.,, Z ={E,L,...}

=0.

With fully 6d phase-space measurements, the potential is overconstrained!



Jeans modelling

2d Jeans models use the v and og 4, profiles in the
meridional plane under certain assumptions about the
orientation of the velocity ellipsoid.

Its main advantage is simplicity, and main drawback is
that it ignores the information about the shape of the
velocity distribution, especially the asymmetric f(vy).
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Distribution function modelling

A general DF f(Z) is specified in terms of integrals of motion in the given potential
Z(x,v; ®). To compute the density p(x) generated by this DF, one needs to know
®(x), but in the gravitationally self-consistent case, ® is determined by p via the Poisson
equation — thus we have a circular dependency.

Such models are constructed by the iterative approach [Prendergast & Tomer 1975; Rowley
1988; Kuijken & Dubinski 1995; Widrow+ 2005], which works best for action-based DFs
[Binney 2014; Piffl4 2015; Sanders & Evans 2016; Cole & Binney 2017; Vasiliev 2019]:

1. assume f(Z; B) —— 2. repeat
and an initial guess for ® establish Z(x,v; ®)

4. adjust model parameters 3 compute p(x

to improve the match no [[[ d®v f(Z(x,v))
\ 3. compare with / update ®(x) from

observables the Poisson equation



Distribution function modelling of the Galactic disc

DF-based models provide and are constrained by the entire velocity distribution func-
tion in multiple spatial bins, not just its first two moments. The number of stars in
each spatial bin may be renormalized to match observations, circumventing the problem
of dealing with spatial selection function. They also typically work with multiple DF
components (split by age & chemistry).
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Dynamical modelling of halo stars, clusters and satellites

Discrete kinematic tracers at large distances (2 10 kpc) with 4-6d phase-space coords:

Stars in the outer halo (fewx103 giants with V{os, ~ 10° RRL)  10° g

[Xue+ 2008; Deason-+ 2012, 2021; Hattori+ 2021; Shen-+ 2022; Bird+ 2022]. . AR Lyrae 1

Globular clusters (~ 150) [Eadie & Harris 2016; Watkins+ 2019; &

Vasiliev 2019; Posti & Helmi 2019; Eadie & Juric 2019; Wang+ 2022; g 10 3

Correa Magnus & Vasiliev 2022]. %D 10% | globular clusters E
= satelites

Satellite galaxies (< 50) [Patel+ 2018; Callingham-+ 2019; g . ]

Li+ 2020; Cautun+ 2020; Fritz+ 2020; CM&V22; Slizewski+ 2022].

Methods: 1t 1 3 10 30 150 300

r [kpc]
Tracer mass estimator [Wilkinson & Evans 1999] — DF of the form L=28 fz(E) constructed via
Cuddeford—Eddington inversion for a power-law tracer density p(r) in a power-law potential ®(r).

Double-power-law DF in action space [Posti+ 2015; Williams+ 2015].
Empirical DF extracted from N-body simulations [e.g. Li+ 2017].

Common features: use unbinned datapoints, marginalize over measurement errors or
missing phase-space dimensions.



Dynamical modelling of halo stars, clusters and satellites

stellar halo total mass distribution
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M2M and Schwarzschild models

In both made-to-measure and Schwarzschild orbit-
superposition methods, the DF in the space of integrals
of motion Z is represented as a weighted sum of delta-
functions: f(Z) = Z,N:l m; 8(Z —1Z;), with N ~ 103-10°
for orbit-based and N > 10° for particle-based models.
Obviously these models are very flexible and are the only
ones capable of representing rotating triaxial bars, thus
have been applied for the Milky Way bulge/bar [zhao 1996;
Hafner+ 2000; Wang+ 2012], in particular to measure the bar
pattern speed Qp [e.g. Portail+ 2015,2017].

One may replace numerically integrated orbits with tori
in action space [McMillan & Binney 2013], though special care
is needed for resonant regions.

Among advantages of orbit-based models, still awaiting
to be realized, are the possibility to describe the rich sub-
structures in the Galactic halo (ideally, building blocks
from individual accretion episodes), and to deal with
time-dependent potentials.
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Constraining the Galactic potential directly from the CBE

1. Infer a smooth f(x,v) from the observed discrete samples (with uncertainties in x,v).

2. Measure the acceleration 0®/0x at different spatial locations x by fitting a linear
least-squares regression to the DF derivatives (different values of v at a fixed x should
give a consistent estimate of accelerations).

Still assume a stationary system, but ignore the Jeans theorem and sidestep the derivation

of integrals of motion; seems to be more robust to deviations from equilibrium.
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Vertical perturbations in the Galactic disc
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Leading theory: ripples after the impact
of a massive satellite (implying Sgr dSph)
through the disc [Widrow+ 2012; Laportet
2018,2019; Binney & Schénrich 2018; Li & Shen
2019; Bland-Hawthorn & Tepper-Garcia 2021, etc.]

Caveat: Sgr was likely not massive enough
at the time of the previous passage through
the disc (1 Gyr ago) [Vasiliev & Belokurov 2020;
Bennett+ 2022].

Counter-caveat: Sgr may have excited long-
lived oscillations in the MW halo, which in
turn perturb the disc [Grand+ 2022].
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Constraining the Galactic potential by vertical perturbations

Obviously, these perturbations pose an obstacle for standard methods for measuring the
potential (e.g., Jeans equations or DF fitting), but they can be used in a different way.

Assuming that the phase spiral is caused by an impul-
sive perturbation, its shape results from phase mixing in a
non-harmonic potential (stars with low energy have higher
frequency and are winding up faster). Thus the vertical
potential (< 1d mass distribution in the Galactic disc) can
be inferred by fitting the shape of the spiral overdensity.
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Constraining the Galactic potential by stellar streams

Since 2000, more than 100
tidal streams have been dis-
covered in the Milky Way.

Since stars in a stream
trace [nearly] the same
orbit, they can be used .
to probe the Galactic
potential [Ibata+ 2001;
Koposov+ 2010; Law & s
Majewski 2010; Gibbons+
2014; Bovy+ 2016; Malhan &
Ibata 2019; etc.]
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Constraining the Galactic potential by stellar streams

Caveat: streams in the outer Galaxy are affected by the recent LMC passage
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Orphan stream [Erkal+ 2019; Koposov+ 2022]



Constraining the Galactic potential by stellar streams
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