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A brief history of the Milky Way

︸ ︷︷ ︸
splendid isolation

11 Gyr 10 Gyr 3 Gyr 0.5 Gyr

Gaia–Enceladus / Sausage Sagittarius

Kraken Sequoia Magellanic clouds

[Helmi+ 2018, Belokurov+ 2018]

[Kruijssen+ 2018] [Myeong+ 2019]



Formation of shells in eccentric mergers
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Shells in external galaxies

NGC 474 [credit: P.-A.Duc, J.-C.Cuillandre] NGC 7600 [credit: K.Crawford]



Evolution of tidal debris
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I stars from the disrupted satellite span a range of energies in the host potential

I each star travels on a closed loop in the r − vr phase space, or on a straight
horizontal stripe in the E − θr space

I orbital period is shorter for more tightly bound stars, so they travel faster
through these spaces

I the number of folds in the r − vr space or stripes in the E − θr space increases
with time



Evolution of tidal debris
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I stars from the disrupted satellite span a range of energies in the host potential

I each star travels on a closed loop in the r − vr phase space, or on a straight
horizontal stripe in the E − θr space

I orbital period is shorter for more tightly bound stars, so they travel faster
through these spaces

I the number of folds in the r − vr space or stripes in the E − θr space increases
with time



Gradual tidal stripping of a massive satellite
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I usually a satellite is not abruptly disrupted but gradually stripped

I stars in the leading arm have lower energies than in the trailing arm

I each stripping episode thus produces two series of folds / shells / stripes

I these shells eventually overlap in all spaces!

I a sufficiently massive satellite experiences dynamical friction,
thus each subsequent stripping episode occurs at a lower energy

I eventually all folds / stripes from each arm of each stripping episode merge



Gradual tidal stripping of a massive satellite
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I usually a satellite is not abruptly disrupted but gradually stripped

I stars in the leading arm have lower energies than in the trailing arm

I each stripping episode thus produces two series of folds / shells / stripes

I these shells eventually overlap in all spaces!

I a sufficiently massive satellite experiences dynamical friction,
thus each subsequent stripping episode occurs at a lower energy

I eventually all folds / stripes from each arm of each stripping episode merge



Gradual tidal stripping of a massive satellite
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I usually a satellite is not abruptly disrupted but gradually stripped

I stars in the leading arm have lower energies than in the trailing arm

I each stripping episode thus produces two series of folds / shells / stripes

I these shells eventually overlap in all spaces!

I a sufficiently massive satellite experiences dynamical friction,
thus each subsequent stripping episode occurs at a lower energy

I eventually all folds / stripes from each arm of each stripping episode merge



Gradual tidal stripping of a massive satellite
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I usually a satellite is not abruptly disrupted but gradually stripped

I stars in the leading arm have lower energies than in the trailing arm

I each stripping episode thus produces two series of folds / shells / stripes

I these shells eventually overlap in all spaces!

I a sufficiently massive satellite experiences dynamical friction,
thus each subsequent stripping episode occurs at a lower energy

I eventually all folds / stripes from each arm of each stripping episode merge



Using shells to constrain the host galaxy potential
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I folds in the r − vr space are independent of the potential, but stripes in E − θr
space do depend on Φ, so may be used as a tool for constraining the potential
[Dong-Páez+ 2022]

I if the potential is too shallow, the total energy Φ(r) + 1
2v

2 is higher at the
pericentre, so the stripes curve up instead of being straight, and conversely if the
potential is too deep, they curve down

I the correct choice of potential should maximize the straightness of stripes



Using shells to constrain the host galaxy potential
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to measure the straightness of stripes, we use the following procedure:

I determine the expected slope of the stripes (depends on the number of wraps)

I project the distribution in the E − θr space along these slanted lines

I construct a “reference” background distribution by shuffling particles in θr and
project it along the same lines

I compute the Kullback–Leibler divergence between the two 1d distributions

the correct potential
maximizes the contrast
(i.e. KLD)

[Dong-Páez+ 2022]



Using shells to constrain the host galaxy potential
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Sim R10, τ = 3.0

practical challenges:

I the expected slope depends on the time since the formation of shells

I contrast is diluted by the smooth halo population

I observational errors blur the narrow stripes in energy

I limited survey volume imposes cuts in the E − θr space near apocentre

even with these caveats, the potential can be recovered to within 10-20%

[Dong-Páez+ 2022]



Phase-space folds as the subhalo detector

Perturbed chevron

accreted halo population in a MW-like simulation

after repeated perturbation by a 1010 M� subhalo

[Davies+ 2022]

flybys of massive satellites or sub-
haloes inflict perturbations on kinema-
tically cold structures such as streams
[e.g., Erkal & Belokurov 2015; Sanders+ 2016;

Dillamore+ 2022] and shells [Davies+ 2022].



Phase-space folds in the Milky Way

|Lz | < 500 kpc km/s Lz > 1000 kpc km/s

|Lz | < 850 kpc km/s, after unsharp masking

[Belokurov+ 2022]

Gaia DR3 (June 2022):
∼ 26× 106 stars with parallax precision
$/ε$ > 10 and line-of-sight velocities
(99% within 5 kpc from the Sun):

selecting high-eccentricity stars
(accreted halo) reveals the folds

[credit: R.Hurt]

Gaia DR3 6d sample




