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Self-consistent equilibrium models of stellar systems

Definition: a stellar system described by a time-independent DF f(I(x,v; CD))

and potential ®(x), which are related by the Poisson equation:
integrals

V2®(x) = 47 G p(x), where p(x) = /// d*v £ (Z(x,v)). of motion

(Jeans thm)

Applications:

» inference on gravitational potential from stellar kinematics
(so-called dynamical modelling)

» creation of initial conditions for isolated galaxy simulations

Methods:  (non-exhaustive list)
» Jeans modelling
» Distribution function-based approaches
» Schwarzschild orbit-superposition method

» Guided N-body simulations (made-to-measure)
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and potential ®(x), which are related by the Poisson equation:
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» Jeans modelling
» Distribution function-based approaches
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» Guided N-body simulations (made-to-measure)
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Orbit-superposition method for self-consistent models

Introduced by Schwarzschild (1979) as a practical approach
for constructing self-consistent triaxial models with prescribed p(x) < ®(x).

mtegrals of motion

To invert the equation p(x /// (x,v; ) ) d3v,

discretize both the density profile and the distribution function:

p(x) = cells of a spatial grid;

mass of each cell is M, = /// p(x) d>x;

f(Z) = collection of orbits with unknown weights:

orb

Z Wi I Ik

& each orbit is a delta-function in the space of integrals of motion
adjustable weight of each orbit [to be determined]



Schwarzschild’s orbit-superposition method: self-consistency

orbits in the model target density

discretized orbit density discretized density
(fraction of time t). that k-th orbit spends in c-th cell) (mass V. in grid cells)

For each c-th cell we require >, wy ti,c = M., where wy, > 0 is orbit weight



Schwarzschild’s orbit-superposition method: kinematics

orbits in the model
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Schwarzschild’s orbit-superposition method: kinematics
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Gauss—Hermite parametrization of LOSVDs [van der Marel & Franx 1993; Gerhard 1993]



Schwarzschild’s orbit-superposition method: fitting procedure

Solve the linear system with non-negativity constraints on the solution vector wy > 0
(linear or non-linear optimization problem)
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Schwarzschild’s orbit-superposition method: fitting procedure
» Assume some potential ®(x)
(e.g., from the deprojected luminosity profile plus parametric DM halo or SMBH)

» Construct the orbit library in this potential:
for each k-th orbit, store its contribution to the discretized density profile

tie, € = 1..Nee and to the kinematic observables wy,, n = 1..Nyps

» Solve the constrained optimization problem to find orbit weights w;:

Nobs Norb 2
Ce _1 Wy Ugp — U
minimize x> + S = E 2 T ]+ S({wm})
n=1 n
subject to w, >0, k =1..Nyp,
observational constraints
Norb
E Wi tie = M., c= 1. N their uncertainties
k=1 T density constraints (cell masses)

> Repeat for different choices of potential and find the one that has lowest )2



O E] github.com/GalacticDynamics-Oxford/Agama/blob/master/py/tutorial_schwarzschild.ipynb ¢¥

Schwarzschild orbit-superposition modelling

This approach for constructing equilibrium models was introduced by Martin Schwarzschild in 1979
(after his retirement!), as the first practical demonstration that triaxial equilibrium galaxy models may
exist — at the time, it was not at all obvious!

Originally, the method was purely a theorist's tool, but soon it was extended to take into account
observational constraints and became one of standard tools in dynamical modelling (inferring the mass
distribution from kinematic data). At the same time, its theoretical applications include the
construction of initial conditions for N-body simulations. In both theoretical and observational
flavours, its advantages are the ability to handle complicated geometry of the model (axisymmetric,
triaxial and even a rotating bar) and a very flexible representation of the distribution function — the
latter can also be a drawback, in the sense that the resulting models may have unphysically rapid
variations of the DF across the phase space. To mitigate this situation, some regularisation is needed,
as with any non-parametric method.

In this tutorial, we first discuss the fundamental concepts of the orbit-superposition method and the
particular features of its implementation in Agama - essentially, the "theoretical" flavour of the
method. Observational applications will be considered in the second part of this tutorial. Since the
method works with orbits, it is essential to first complete the tutorial_potential_orbits
notebook.



Observational applications of the Schwarzschild method
Photometry: usually HST (FoV ~ 3/, PSF > 0.05")

Kinematics: integral-field spectroscopic units (IFU):

» ground-based, non-AO: SAURON (WHT 4m, FoV ~ 35", PSF ~ 1-2"),
MUSE (VLT 8m, FoV 60", PSF ~ 1”)

» ground-based, AO: NIFS (Gemini 8m), SINFONI (VLT 8m): FoV ~ 3", PSF ~ 0.1”
» space-based: NIRSpec (JWST 6.5m): FoV ~ 3", PSF ~ 0.1” (but higher contrast)

NGC 4151 [Roberts+ 2021]




Observational applications of the Schwarzschild method
Photometry: usually HST (FoV ~ 3/, PSF > 0.05")

Kinematics: integral-field spectroscopic units (IFU):

» ground-based, non-AO: SAURON (WHT 4m, FoV ~ 35", PSF ~ 1-2"),
MUSE (VLT 8m, FoV 60", PSF ~ 1”)
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Modelling code
\Y

NGC 4151 [Roberts+ 2021] [Vasiliev & Valluri 2020]




Theme 1: DF- and orbit-based dynamical models
Model of an edge-on SO galaxy FCC 170 constrained by MUSE IFU kinematics

Observations Schwarzschild model DF model
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Theme 2: measurement of supermassive black hole masses



Theme 2: measurement of supermassive black hole masses

» time-resolved stellar orbits around Sgr A*
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Theme 2: measurement of supermassive black hole masses

» time-resolved stellar orbits around Sgr A*

» imaging of the inner edge of the accretion disc by the Event Horizon telescope

Ll

-

M87 [EHT collaberation 2019]




Theme 2: measurement of supermassive black hole masses

» time-resolved stellar orbits around Sgr A*

» imaging of the inner edge of the accretion disc by the Event Horizon telescope

(in popular culture)
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Theme 2: measurement of supermassive black hole masses

» time-resolved stellar orbits around Sgr A*
» imaging of the inner edge of the accretion disc by the Event Horizon telescope

» radiointerferometry of megamasers in the accretion disc
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Theme 2: measurement of supermassive black hole masses

» time-resolved stellar orbits around Sgr A*
» imaging of the inner edge of the accretion disc by the Event Horizon telescope
» radiointerferometry of megamasers in the accretion disc

» kinematics of molecular gas in the accretion disc with ALMA interferometry
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Theme 2: measurement of supermassive black hole masses

» time-resolved stellar orbits around Sgr A*

» imaging of the inner edge of the accretion disc by the Event Horizon telescope
» radiointerferometry of megamasers in the accretion disc

» kinematics of molecular gas in the accretion disc with ALMA interferometry

> reverberation mapping (time-delay variability monitoring in AGN)
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Theme 2: measurement of supermassive black hole masses

time-resolved stellar orbits around Sgr A*

imaging of the inner edge of the accretion disc by the Event Horizon telescope

>

>

» radiointerferometry of megamasers in the accretion disc

» kinematics of molecular gas in the accretion disc with ALMA interferometry
> reverberation mapping (time-delay variability monitoring in AGN)

>

kinematics and dynamical modelling of unresolved stars in galactic nuclei
(Jeans and Schwarzschild models)



Theme 2a: stellar-dynamical measurements of SMBH in AGN
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Theme 2a: stellar-dynamical measurements of SMBH in AGN
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Theme 2a: stellar-dynamical measurements of SMBH in AGN
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Theme 2a: stellar-dynamical measurements

NIFS
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Theme 2a: stellar-dynamical measurements of SMBH in AGN

fiducial model
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Theme 2a: stellar-dynamical measurements of SMBH in AGN
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Theme 2b: SMBH in ultracompact galaxies with JWST
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Theme 2b: SMBH in ultracompact galaxies with JWST
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Theme 3: modelling of barred galaxies

Challenges: triaxial geometry, chaotic regions in phase space

Goals: Q

Jeans modelling -
Distribution functions, e.g., f(J) ?
Tremaine-Weinberg

Orbital response models

Guided N-body simulations (made-to-measure)

+ o+ o+ W

Schwarzschild orbit-superposition modelling



3D structure of bars

z[kpe]

Bars often buckle vertically from the disk plane,
but only in the inner part where the planar orbits
are unstable;

shorter and vertically thick part is associated with
boxy/peanut (B/P) bulges, and the longer and
thinner component can be seen in face-on barlens
galaxies [Athanassoula 2005, 2013].
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The deprojection problem

Pathway from 2d surface brightness profile to 3d density profile is non-unique

(presented at the bars conference in Granada, July 2023)



The deprojection problem

Pathway from 2d surface brightness profile to 3d density profile is non-unique

(talk at the Academy of Athens, May 2024)



Forward-modelling of 3d density profile
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Forward-modelling of 3d density profile

The fitted model qualitatively recovers the 3d density profile,
though not without some defects 1) = 45°
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Degeneracies in determining bar orientation

20000

It is impossible to distinguish a rotated bar .§
(0 < 9 < fmax < 90°) from a shorter bar oo 2
viewed at 1) = 0° just from photometry. % 10000 2
o
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Schwarzchild modelling of deprojected bars
MUSE-like kinematic maps (1’ FoV) of a Milky Way-like galaxy at D = 20 Mpc
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Recovery of bar pattern speed

Q is recovered almost perfectly if the true 3d density is used,
or to within 10% if the deprojected density is used.

This is for the most challenging edge-on orientation,
where the Tremaine-Weinberg method is not applicable!

1,0 = thrue = 45°

True density model Deprojected model

—e— Deprojected model
—e— Fit-3D-snap model
—e— True density model
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Recovery of bar orientation

Bar orientation is also constrained much better than from pure photometry
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20

Recovery of black hole mass
151
Central supermassive black hole
» does not destroy the bar [Wheeler+ 2023]
» has only an upper limit on M, in these models
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Theme 4: Milky Way halo

to be continued...



