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Self-consistent equilibrium models of stellar systems

Definition: a stellar system described by a time-independent DF f
(
I(x, v; Φ)

)
and potential Φ(x), which are related by the Poisson equation:

∇2Φ(x) = 4π G ρ(x), where ρ(x) =

∫∫∫
d3v f

(
I(x, v)

)
.

integrals
of motion
(Jeans thm)

Applications:

▶ inference on gravitational potential from stellar kinematics
(so-called dynamical modelling)

▶ creation of initial conditions for isolated galaxy simulations

Methods: (non-exhaustive list)

▶ Jeans modelling

▶ Distribution function-based approaches

▶ Schwarzschild orbit-superposition method

▶ Guided N-body simulations (made-to-measure)
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Orbit-superposition method for self-consistent models

Introduced by Schwarzschild (1979) as a practical approach
for constructing self-consistent triaxial models with prescribed ρ(x) ⇔ Φ(x).

To invert the equation ρ(x) =

∫∫∫
f
(
I (x, v ; Φ)

)
d3v,

discretize both the density profile and the distribution function:

ρ(x) =⇒ cells of a spatial grid;

mass of each cell is Mc =

∫∫∫
x∈Vc

ρ(x) d3x ;

f (I) =⇒ collection of orbits with unknown weights:

f (I) =
Norb∑
k=1

wk δ(I − Ik)

integrals of motion

each orbit is a delta-function in the space of integrals of motion

adjustable weight of each orbit [to be determined]



Schwarzschild’s orbit-superposition method: self-consistency

orbits in the model target density

discretized orbit density
(fraction of time tkc that k-th orbit spends in c-th cell)

discretized density
(mass Mc in grid cells)

For each c-th cell we require
∑

k wk tkc = Mc , where wk ≥ 0 is orbit weight



Schwarzschild’s orbit-superposition method: kinematics

orbits in the model

target LOSVDorbit LOSVDs



Schwarzschild’s orbit-superposition method: kinematics

Gauss–Hermite parametrization of LOSVDs [van der Marel & Franx 1993; Gerhard 1993]



Schwarzschild’s orbit-superposition method: fitting procedure
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Schwarzschild’s orbit-superposition method: fitting procedure

▶ Assume some potential Φ(x)
(e.g., from the deprojected luminosity profile plus parametric DM halo or SMBH)

▶ Construct the orbit library in this potential:
for each k-th orbit, store its contribution to the discretized density profile

tkc , c = 1..Ncell and to the kinematic observables ukn, n = 1..Nobs

▶ Solve the constrained optimization problem to find orbit weights wk :

minimize χ2 + S ≡
Nobs∑
n=1

(∑Norb

k=1 wk ukn − Un

δUn

)2

+ S
(
{wk}

)
subject to wk ≥ 0, k = 1..Norb,

Norb∑
k=1

wk tkc = Mc , c = 1..Ncell

▶ Repeat for different choices of potential and find the one that has lowest χ2

regularization term

observational constraints

their uncertainties

density constraints (cell masses)





Observational applications of the Schwarzschild method

Photometry: usually HST (FoV ∼ 3′, PSF ≳ 0.05′′)

Kinematics: integral-field spectroscopic units (IFU):

▶ ground-based, non-AO: SAURON (WHT 4m, FoV ∼ 35′′, PSF ∼ 1–2′′),
MUSE (VLT 8m, FoV 60′′, PSF ∼ 1′′)

▶ ground-based, AO: NIFS (Gemini 8m), SINFONI (VLT 8m): FoV ∼ 3′′, PSF ∼ 0.1′′

▶ space-based: NIRSpec (JWST 6.5m): FoV ∼ 3′′, PSF ∼ 0.1′′ (but higher contrast)
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NGC 4151 [Roberts+ 2021]

SAURON
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Theme 1: DF- and orbit-based dynamical models
Model of an edge-on S0 galaxy FCC 170 constrained by MUSE IFU kinematics
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Theme 2: measurement of supermassive black hole masses

▶ time-resolved stellar orbits around Sgr A⋆

▶ imaging of the inner edge of the accretion disc by the Event Horizon telescope

▶ radiointerferometry of megamasers in the accretion disc

▶ kinematics of molecular gas in the accretion disc with ALMA interferometry

▶ reverberation mapping (time-delay variability monitoring in AGN)

▶ kinematics and dynamical modelling of unresolved stars in galactic nuclei
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Theme 2: measurement of supermassive black hole masses

▶ time-resolved stellar orbits around Sgr A⋆

▶ imaging of the inner edge of the accretion disc by the Event Horizon telescope

▶ radiointerferometry of megamasers in the accretion disc

▶ kinematics of molecular gas in the accretion disc with ALMA interferometry

▶ reverberation mapping (time-delay variability monitoring in AGN)

▶ kinematics and dynamical modelling of unresolved stars in galactic nuclei

M87 [EHT collaboration 2019]
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Theme 2: measurement of supermassive black hole masses

▶ time-resolved stellar orbits around Sgr A⋆
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Theme 2: measurement of supermassive black hole masses

▶ time-resolved stellar orbits around Sgr A⋆

▶ imaging of the inner edge of the accretion disc by the Event Horizon telescope

▶ radiointerferometry of megamasers in the accretion disc

▶ kinematics of molecular gas in the accretion disc with ALMA interferometry

▶ reverberation mapping (time-delay variability monitoring in AGN)

▶ kinematics and dynamical modelling of unresolved stars in galactic nuclei

[Kaspi 2018] [Bentz+ 2009]

GM• ∝ RBLR σ
2, RBLR ∝ c ∆t

coefficients of proportionality calibrated “empirically”



Theme 2: measurement of supermassive black hole masses

▶ time-resolved stellar orbits around Sgr A⋆

▶ imaging of the inner edge of the accretion disc by the Event Horizon telescope

▶ radiointerferometry of megamasers in the accretion disc

▶ kinematics of molecular gas in the accretion disc with ALMA interferometry

▶ reverberation mapping (time-delay variability monitoring in AGN)

▶ kinematics and dynamical modelling of unresolved stars in galactic nuclei
(Jeans and Schwarzschild models)



Theme 2a: stellar-dynamical measurements of SMBH in AGN

NGC 4151 [Roberts+ 2021]
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Theme 2a: stellar-dynamical measurements of SMBH in AGN

NGC 4151 [Roberts+ 2021]
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Theme 2a: stellar-dynamical measurements of SMBH in AGN

NGC 4151 [Roberts+ 2021]
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Theme 2a: stellar-dynamical measurements of SMBH in AGN
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NGC 5273 [Merrell+ 2023]
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Theme 2a: stellar-dynamical measurements of SMBH in AGN
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Theme 2a: stellar-dynamical measurements of SMBH in AGN
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Theme 2b: SMBH in ultracompact galaxies with JWST
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UCD736 [Taylor+ 2025]: M• = (2.0± 1)× 106M⊙
using Jeans, DF and Schwarzschild methods (spherical)
(overmassive SMBH, M• ∼ 0.1M⋆)



Theme 2b: SMBH in ultracompact galaxies with JWST
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NGC 4486b [Tahmasebzadeh+ 2025]:
M• = (3.6± 0.7)× 108M⊙
(overmassive off-centred SMBH, M• ∼ 0.1M⋆)



Theme 3: modelling of barred galaxies

Challenges: triaxial geometry, chaotic regions in phase space

Goals: Ω Φ

Jeans modelling – –

Distribution functions, e.g., f (J) ? ?

Tremaine–Weinberg ± –

Orbital response models + +

Guided N-body simulations (made-to-measure) + +

Schwarzschild orbit-superposition modelling + +



3D structure of bars

Bars often buckle vertically from the disk plane,
but only in the inner part where the planar orbits
are unstable;
shorter and vertically thick part is associated with
boxy/peanut (B/P) bulges, and the longer and
thinner component can be seen in face-on barlens
galaxies [Athanassoula 2005, 2013].
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[Lütticke+ 2000] [Laurikainen+ 2011] [Portail+ 2015]



The deprojection problem

Pathway from 2d surface brightness profile to 3d density profile is non-unique

⇒

(presented at the bars conference in Granada, July 2023)



The deprojection problem

Pathway from 2d surface brightness profile to 3d density profile is non-unique

⇒

(talk at the Academy of Athens, May 2024)



Forward-modelling of 3d density profile

face-on view

edge-on view, ψ = 0

lin
e
of
sig
ht

ψ

ψ = 45◦

[Dattathri+ 2024]



Forward-modelling of 3d density profile

The fitted model qualitatively recovers the 3d density profile,
though not without some defects ψ = 45◦

[Dattathri+ 2024]



Degeneracies in determining bar orientation

tr
u
e
or
ie
n
ta
ti
onIt is impossible to distinguish a rotated bar

(0 < ψ < imax ≲ 90◦) from a shorter bar
viewed at ψ = 0◦ just from photometry.

(It might be easier at lower inclinations i < 90◦).

Kinematics / dynamical modelling should help?

[Dattathri+ 2024]



Schwarzchild modelling of deprojected bars

MUSE-like kinematic maps (1′ FoV) of a Milky Way-like galaxy at D = 20 Mpc

[Dattathri+ 2024]



Recovery of bar pattern speed

Ω is recovered almost perfectly if the true 3d density is used,
or to within 10% if the deprojected density is used.

This is for the most challenging edge-on orientation,
where the Tremaine–Weinberg method is not applicable!

ψ = ψtrue = 45◦

[Dattathri+ 2024]



Recovery of bar orientation

Bar orientation is also constrained much better than from pure photometry

tr
u
e
va
lu
e

[Dattathri+ 2024]



Recovery of black hole mass

Central supermassive black hole

▶ does not destroy the bar [Wheeler+ 2023]

▶ has only an upper limit on M• in these models

▶ is very sensitive to the accuracy of
reconstruction of enclosed stellar mass



Theme 4: Milky Way halo

to be continued...


