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How many times do I need to zoom in to resolve the loss cone?
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The loss cone
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Orbits intro

Keplerian orbit with semimajor axis a and eccentricity e:

E = −GM•
2a

Torb =
2π a3/2

√
GM•

Lcirc =
GM•√
−2E

=
√

GM•a

L = Lcirc

√
1− e2

R ≡ (L/Lcirc)2 = 1− e2 ≈ 2(1− e) for very eccentric orbits

If the physical radius of the loss cone rLC � a, only stars with 1− e � 1
are able to enter it, and in this case LLC ≈

√
2 G M• rLC.



Distribution functions intro

f (x, v) is the DF in the 6d phase space (normalized so that
∫
f d3x d3v = N?m?)

according to Jeans’ theorem, in a steady state it may depend only on the
integrals of motion, i.e., in a spherical potential, f (E , L) or f (E ,R).

The mass of stars per unit E ,R is

N(E ,R) dE dR = g(E ,R) f (E ,R) dE dR,

where the density of states g(E ,R) = 4π2 Torb(E ,R) L2
circ(E ) ≈ g(E );

in the Keplerian case, g(E ) =
√

2π3 (GM•)3

(−E)5/2 .

In case of isotropic velocity distribution
(⇔ ”thermal” eccentricity distribution),
f (E ,R) = f (E ).

Such a distribution is thermodynamically
preferred, but cannot be fully achieved
because of the existence of the loss cone.
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Relaxation intro

Classical (”Chandrasekhar”) two-body relaxation theory:
under the assumptions of

1. uncorrelated pairwise encounters,

2. weak deflections (impact parameter b � b90 ≡ Gm?/v
2),

3. slow evolution (Torb � Trel),

the evolution of the DF f (E ,R) can be described by
the orbit-averaged Fokker–Planck equation:

∂
[
f (E ,R, t) g(E ,R)

]
∂t

= −∂FE (E ,R, t)

∂E
− ∂FR(E ,R, t)

∂R
−FE = DEE

∂f

∂E
+DER

∂f

∂R + m?AE f

−FR = DRE
∂f

∂E
+DRR

∂f

∂R + m?AR f

 fluxes in E and R

diffusion coefficients advection coefficientsstellar mass



Relaxation intro (2)

Advection and diffusion coefficients are given by some integrals
over the DF of field stars, and nearly always this field DF is approximated
by the isotropized form f (E ) ≡

∫ 1

0
f (E ,R) dR:

DEE (E ,R) = m?

∫
dE ′ f (E ′) K (E ′,E ,R) with some kernel K .

Usually the field DF is the same as the test stars’ DF evolving under the
Fokker–Planck eqn.

In the multi-mass case (e.g., 1M� stars and 10M� black holes), diffusion
coefficients are the same for all species, and the field DF is given by the
sum of all species’ DFs additionally weighted by field stars’ mass, i.e.,
DEE (E ,R) =

∑
i m?,i

∫
dE ′ f i(E ′) K (E ′,E ,R).

Thus the relaxation rate is often dominated by the most massive species.

OTOH the advection coefficients are not weighted by the field star masses,
AE =

∑
i

∫
dE ′ f i(E ′)

K

(E ′,E ,R),
but then additionally multiplied by the test star mass in the eqn for flux.

This is what gives rise to dynamical friction and mass segregation.



Relaxation in multimass systems

For a typical IMF, a few % of mass is contained in black holes with m? & 10 M�:
this means that they significantly contribute to the relaxation rate
even without mass segregation!
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see also
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Diffusion in energy and mass segregation

10-610-510-410-310-210-1100 101102
103
104
105
106
107
108
109

1010
1011
1012

m
a
ss

 d
e
n
si

ty
 ρ

 [
M

¯
/p

c3
] t=0

10-610-510-410-310-210-1100 101102
103
104
105
106
107
108
109

1010
1011
1012

m
a
ss

 d
e
n
si

ty
 ρ

 [
M

¯
/p

c3
] t=5 Gyr

10-610-510-410-310-210-1100 101102
103
104
105
106
107
108
109

1010
1011
1012

m
a
ss

 d
e
n
si

ty
 ρ

 [
M

¯
/p

c3
] t=10 Gyr

10-610-510-410-310-210-1100 101

distance [pc]

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

d
if
fu

si
o
n
 c

o
e
ff

ic
ie

n
t 
D
E
E

stars

BHs

10-610-510-410-310-210-1100 101

distance [pc]

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

d
if
fu

si
o
n
 c

o
e
ff

ic
ie

n
t 
D
E
E

stars

BHs

10-610-510-410-310-210-1100 101

distance [pc]

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

d
if
fu

si
o
n
 c

o
e
ff

ic
ie

n
t 
D
E
E

stars

BHs

example of re-growth of the Bahcall–Wolf cusp



Diffusion in angular momentum

If we ignore for the moment the diffusion in the energy direction,
the 1d Fokker–Planck equation for f (R, t)

∣∣
E=const

is

∂f (R, t)

∂t
= −∂FR(R, t)

∂R , −FR = DRR
∂f

∂R + m?AR f

The advection (drift) coefficient AR turns out to be zero
(because the flux should vanish for the isotropic DF f (R) = const),
and the diffusion coefficient, to first order, is DRR(E ,R) ≈ D(E )R.

This is equivalent to the diffusion or heat conduction equation
in the cylindrical geometry, and the steady-state solution is

0 = D ∂
∂R

(
R ∂f

∂R

)
=⇒

f (R) =
f ln[R/RLC]

ln[1/RLC]− 1 +RLC
.
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Empty vs. full loss cone regimes

recall that stars are captured (loss cone is purged) only at pericentre passages

R

RLC

T/Torb

Two regimes:
compare Torb with the loss
cone repopulation timescale√
DRRTrep ' RLC.

q ≡ Torb

Trep
=

DTorb

RLC
.

q � 1: empty loss cone

q � 1: full loss cone



Empty vs. full loss cone regimes
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When the loss cone is not entirely empty, the DF at its boundary is > 0;
one can write the boundary condition in the form

0 = f (RLC)− αR ∂f (R)

∂R

∣∣∣∣
RLC

, where α ≈ (q2 + q4)1/4 and q =
DTorb

RLC
.

The steady-state solution is

f (R) =
f
(

ln[R/RLC] + α
)

ln[1/RLC] + (1−RLC)(α− 1)
,

and the flux into the loss cone is

−FR =
f D

ln[1/RLC] + (1−RLC)(α− 1)
.

In the empty LC regime, the flux is proportional to the relaxation rate D
and only logarithmically depends on the loss-cone size RLC,
while in the full LC regime the flux is linearly proportional to RLC

and nearly independent of the relaxation rate.



Dependence of capture rates on galaxy properties

Local relaxation time Trel(r) ≡ 0.34σ(r)3

G 2 ρ(r) m? ln Λ
∼ D−1.

In the Keplerian potential (r . rinfl), σ(r) ∝
√

GM•/r , and if we assume

ρ(r) ∝ M•
r 3
infl

(
r

rinfl

)−γ
, then

Trel ∝
M•
m?

r
3/2
infl√
GM•

(
r

rinfl

)γ−3/2

' M•
m?

(
r

rinfl

)γ−3/2

Torb(rinfl).
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Note that the functions g!ð!!Þ and h!ð!!Þ are determined
uniquely in these dimensionless units. These functions are
plotted in Figure 7.

The function R0ð!Þ that defines the edge of the loss cone is
given by equation (12), with

Rlcð!Þ ¼ 2
rt
rh

$ %2  ! r!t
& '

& !!

2þ r!&1
c

& '
r!2c

;

r!c !
!ð Þ ¼ 1

4L e& 1&!!ð Þ=2ð Þ=4½ )
; ð22Þ

rcð!Þ is the radius of a circular orbit of energy !.
If we set ! ¼ 0:4MBH=m? (Spitzer & Hart 1971), the dimen-

sionless flux F !ð!!Þ is determined by the two parameters

MBH

m?
;
rh
rt

$ %
: ð23Þ

Fig. 3.—Dependence of consumption rate on assumed black hole mass for
the galaxies in Table 1.

Fig. 4.—Comparison of consumption rates computed using the two values
of MBH in Table 1. Abscissa: MBH computed from the MBH-" relation (eq. [7]).
Ordinate: MBH from Magorrian et al. (1998).

Fig. 5.—Consumption rate as a function of (a) galaxy luminosity and (b)
black hole mass. Black hole masses are taken from the MBH-" relation. The
dashed line in (b) shows the relation defined by a singular isothermal sphere,
(eq. [38b]); it is a good fit to the galaxies plotted with stars, which have central
density profiles with # * r&2.

WANG & MERRITT156 Vol. 600

[Stone+2020]



Complication #1: non-spherical galaxy potentials
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Even if the black hole dominates the total potential,
a non-spherical stellar distribution produces torques
that lead to periodic variations of orbital angular mo-
mentum even in absense of relaxation.

Stars from the ”centrophilic” orbits can sustain much
higher capture rates than in spherical galaxies if the
relaxation rate is low, and when they are drained,
the capture rates are only moderately higher due to
log-dependence of flux on RLC.



Complication #2: resonant relaxation

In a [nearly-]Keplerian potential, orbits are almost closed ellipses and can
interact with each other over many periods before ”decorrelating” due to
orbit precession.
This gives rise to enhanced relaxation in angular momentum [Rauch &

Tremaine 1996; Hopman & Alexander 2006], but only at eccentricities below the
”Schwarzschild barrier” set by relativistic precession [Merritt+ 2011; Brem+

2013; Hamers+ 2014; Bar-Or & Alexander 2015].

Schwarzschild barrier

[Merritt 2015]



Complication #3: anisotropic and time-dependent loss cones
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[Merritt & Wang 2005; Lezhnin & Vasiliev 2015] [Stone+ 2018]



Complication #4: giant stars and partial disruptions

Since the tidal radius is rLC ' r? (M•/m?)
1/3, giant stars can have a sig-

nificant contribution to the total TDE rate [Magorrian & Tremaine 1999,
McLeod+ 2012]. Stars can ”grow” into the loss cone even without changing
their orbit [Syer & Ulmer 1999], and the outer envelope of a giant can be
repeatedly stripped in many partial disruption flares [McLeod+ 2013].
For M• & 108 M�, rLC for main-sequence stars is below rSchw, so only giants
produce TDE flares.
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Tidal disruptions vs. EMRIs
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Compact objects (NS, BH) are not tidally disrupted, but can lose enough
energy to gravitational waves during close pericentre passages to end up on
very tight orbits (hence in the LISA frequency band), possibly completing
hundreds of orbits before merging.
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Tidal disruptions vs. EMRIs
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Compact objects (NS, BH) are not tidally disrupted, but can lose enough
energy to gravitational waves during close pericentre passages to end up on
very tight orbits (hence in the LISA frequency band), possibly completing
hundreds of orbits before merging.

[credit: Giacomo Balla]



Formation of EMRIs
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In the standard scenario, COs diffuse through phase space just like stars,
but when they reach high enough eccentricity that the GW emission
timescale TGW becomes shorter than the diffusion timescale,
they slide down towards small a and low e.
The division line TGW = Tdif crosses the loss-cone boundary at some aGW.

Tdif ' R/D ∝ (1− e)Trel TGW ∝ (1− e)7/2a4



Formation of EMRIs
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Total rate: 4.62e-08

Resonant relaxation was once thought to be a signifi-
cant factor affecting the EMRI rates, but more careful
analysis showed that it is likely unimportant in the re-
gion of interest [cf. Alexander 2017]: the GW onset oc-
curs to the left of the Schwarzschild barrier, and hence
still determined by ordinary two-body relaxation.
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Summary

early loss-cone theory

[credit: Botticelli]



Summary

early loss-cone theory

[credit: Botticelli]

modern loss-cone theory

[credit: Capogrossi]


