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with 6d phase-space coordinates
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How many times do | need to zoom in to resolve the loss cone?
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The loss cone
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Orbits intro

Keplerian orbit with semimajor axis a and eccentricity e:
GM,
2a
21 a3/2
v GM,
GM,
Lcirc =7V GMoa
v —2E

L:Lcirc V1—e?

R =(L/Lic)®> =1—e®>~2(1—e) for very eccentric orbits

E —

Torb =

If the physical radius of the loss cone r ¢ < a, only stars with 1 —e < 1
are able to enter it, and in this case Lic = v2G M, ric.



Distribution functions intro

f(x, v) is the DF in the 6d phase space (normalized so that [ f d®x d®v = N,m,)
according to Jeans' theorem, in a steady state it may depend only on the
integrals of motion, i.e., in a spherical potential, f(E, L) or f(E,R).

The mass of stars per unit E, R is

N(E,R)dEdR = g(E,R)f(E,R) dE dR,

where the density of states g(E,R) = 472 Tow(E,R) L2, (E) ~ g(E);

circ

in the Keplerian case, g(E) = %
In case of isotropic velocity distribution f(R)
(< "thermal” eccentricity distribution),  (at fixed E)

f(E,R) = f(E).

Such a distribution is thermodynamically
preferred, but cannot be fully achieved
because of the existence of the loss cone.

loss cone boundary

o
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Relaxation intro

Classical (" Chandrasekhar”) two-body relaxation theory:
under the assumptions of

1. uncorrelated pairwise encounters,
2. weak deflections (impact parameter b > bgg = Gm, /v?),
3. slow evolution ( Ty, < Tre),

the evolution of the DF f(E,R) can be described by
the orbit-averaged Fokker—Planck equation:

O[f(E,R,t)g(E.R)]  0Fe(E,R,t) OFr(E,R 1)

ot n OE IR
of of
—.FE :DEE—+DER—+m*.AEf
OE OR :
of - of o fluxes in E and R
_fR—DRE@_E +f RRﬁ‘i‘m* R

diffusion coefficients advection coefficients

stellar mass



Relaxation intro (2)

Advection and diffusion coefficients are given by some integrals
over the DF of field stars, and nearly always this field DF is approximated
by the isotropized form f(E fo (E,R)dR:

Dee(E,R) =m, [dE'f )K(E’, E,R) with some kernel K.
Usually the field DF is the same as the test stars' DF evolving under the
Fokker—Planck eqn.

In the multi-mass case (e.g., 1 M, stars and 10 Mg, black holes), diffusion
coefficients are the same for all species, and the field DF is given by the
sum of all species DFs additionally weighted by field stars’ mass, i.e.,
Dee(E,R) = >, m,; [ dE' f;(E") K(E', E,R).

Thus the relaxation rate is often dominated by the most massive species.

OTOH the advection coefficients are not weighted by the field star masses,
Ag =3, [ dE'fi(E')M(E", E, R),
but then additionally multiplied by the test star mass in the eqn for flux.

This is what gives rise to dynamical friction and mass segregation.



Relaxation in multimass systems

For a typical IMF, a few % of mass is contained in black holes with m, = 10 M
this means that they significantly contribute to the relaxation rate
even without mass segregation!
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Diffusion in energy and mass segregation
example of re-growth of the Bahcall-Wolf cusp
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Diffusion in angular momentum

If we ignore for the moment the diffusion in the energy direction,

the 1d Fokker—Planck equation for f(R, t)‘E:Const is
3f(R,t)__afR(Rat) —Fp =D ﬁ+mA f
5 = aR , R = URR R xR

The advection (drift) coefficient Az turns out to be zero
(because the flux should vanish for the isotropic DF f(R) = const),
and the diffusion coefficient, to first order, is Drr(E,R) ~ Z(E)R.

This is equivalent to the diffusion or heat conduction equation
in the cylindrical geometry, and the steady-state solution is

0=9 5% (Rp) = N —
7 In[R/Ruc] ﬁ

f R = . ©0.6 i
(R) In[1/Ric] — 1+ Ric £ |

=
0.4

0.2




Empty vs. full loss cone regimes

recall that stars are captured (loss cone is purged) only at pericentre passages

Two regimes:
compare T, with the loss
cone repopulation timescale

\V D'RR 7—rep = RLC-

Torb _ @Torb
Trep RLC '
g < 1. empty loss cone

q

g > 1. full loss cone




Empty vs. full loss cone regimes

When the loss cone is not entirely empty, the DF at its boundary is > 0;
one can write the boundary condition in the form

f(R Tor
Ozf(RLC)_OéR—a (R) ., where a~ (g% + ¢*)Y* and q:—9 il
IR g, L R.c
The steady-state solution is 1.21
f (In[R/Ric] + a L.0r:
f(R) = ( [R/Ruc] ) . 08}
|n[1/RLc]+(1—RLC)(Oé— ].) §06L |
and the flux into the loss cone is o.4»§ — empty (¢=0.1) -
5o f9 0.2} — full  (g=10) -
RO/ R+ (1 =R (a—1) 000 02 02 06 08 10

R
In the empty LC regime, the flux is proportional to the relaxation rate ¥
and only logarithmically depends on the loss-cone size R,
while in the full LC regime the flux is linearly proportional to R c
and nearly independent of the relaxation rate.



Dependence of capture rates on galaxy properties

capture rate, M_/yr
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Complication #1: non-spherical galaxy potentials
Even if the black hole dominates the total potential,
a non-spherical stellar distribution produces torques
that lead to periodic variations of orbital angular mo-

mentum even in absense of relaxation.

Stars from the " centrophilic” orbits can sustain much
higher capture rates than in spherical galaxies if the
relaxation rate is low, and when they are drained,
the capture rates are only moderately higher due to
log-dependence of flux on R c.
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Complication #2: resonant relaxation

In a [nearly-]Keplerian potential, orbits are almost closed ellipses and can
interact with each other over many periods before "decorrelating” due to
orbit precession.

This gives rise to enhanced relaxation in angular momentum [Rauch &
Tremaine 1996; Hopman & Alexander 2006, but only at eccentricities below the
"Schwarzschild barrier” set by relativistic precession [Merritt+ 2011; Brem+
2013; Hamers+ 2014; Bar-Or & Alexander 2015].
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Complication #3: anisotropic and time-dependent loss cones
steady-state log profile f(R) is established only after [a fraction of] T
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Complication #4: giant stars and partial disruptions

R. [Ro]

R. [Ro]

Since the tidal radius is r.c ~ r,(M,/m,)'/3, giant stars can have a sig-
nificant contribution to the total TDE rate [Magorrian & Tremaine 1999,
Mcleod+ 2012]. Stars can "grow” into the loss cone even without changing
their orbit [Syer & Ulmer 1999, and the outer envelope of a giant can be
repeatedly stripped in many partial disruption flares [MclLeod-+ 2013].

For M, 2, 108 M, ric for main-sequence stars is below rsepy, S0 only giants
produce TDE flares.
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Tidal disruptions vs. EMRIs

Compact objects (NS, BH) are not tidally disrupted, but can lose enough
energy to gravitational waves during close pericentre passages to end up on
very tight orbits (hence in the LISA frequency band), possibly completing

hundreds of orbits before merging.

[credit: Paul]
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Tidal disruptions vs. EMRIs

Compact objects (NS, BH) are not tidally disrupted, but can lose enough
energy to gravitational waves during close pericentre passages to end up on
very tight orbits (hence in the LISA frequency band), possibly completing
hundreds of orbits before merging.
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[credit: Paul] [credit: Giacomo Balla]



Formation of EMRIs

In the standard scenario, COs diffuse through phase space just like stars,
but when they reach high enough eccentricity that the GW emission
timescale Tgw becomes shorter than the diffusion timescale,

they slide down towards small a and low e.

The division line Tgw = Tgif crosses the loss-cone boundary at some agw.

Drain time [yr]
alpc]




Formation of EMRIs

Resonant relaxation was once thought to be a signifi-
i cant factor affecting the EMRI rates, but more careful

g 107 analysis showed that it is likely unimportant in the re-

5 gion of interest [cf. Alexander 2017]: the GW onset oc-

" 20 curs to the left of the Schwarzschild barrier, and hence
o] still determined by ordinary two-body relaxation.
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Summary

early loss-cone theory
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