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Introducing the participants

Milky Way LMC
stellar mass ~ 6 x 101 M, ~ 3 x 10° M,
total mass ~ 102 M, ~ (1-2) x 10" M,
peak Veirc 250 km/s 100 km/s
disc scale radius 3 kpc 1.5 kpc
distance to centre 8 kpc 50 kpc
morphological type barred spiral barred irregular?
# of satellites ~ 30 ~ 10

just passed its (first?) pericentre
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Consequences of the MW-LMC encounter

vvVvyVvyyvYyy

LMC brings its own satellites, stars and clusters

LMC deflects stars and streams passing close to its trajectory
LMC creates a density wake in the MW halo

LMC displaces the Milky Way

LMC creates a dipole asymmetry in the outer MW halo

LMC affects the velocities of other galaxies relative to MW



Stellar tidal streams in the Milky Way
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DECalS+Gaia [Price-Whelan+ 2019] GalStreams database [Mateu 2023]



Local effects of the LMC: deflection of stellar streams

s - Orphan—Chenab stream: no remnant, spans > 200° on the sky.
7 Proper motion is misaligned with the stream track in the southern
25 .
8 . g art of the stream due to a close encounter with the LMC.
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Local effects of the LMC: deflection of stellar streams

LMC passes close to several other streams in

the Southern hemisphere;

by analyzing the perturbations of individual

streams,
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one may probe the total mass and
even the radial mass distribution of the LMC.
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Effect of the LMC on the Sagittarius stream

Sagittarius stream: by far the largest in the Milky Way, spans the entire sky.

First discovered in 2MASS [Majewski+ 2003]; studied extensively using SDSS [Belokurov+
2006, Koposov+ 2012] and Gaia [Ibata+ 2020, Antoja+ 2020, Ramos+ 2020, 2022].
Progenitor: Sgr dSph (third-largest MW satellite after LMC and SMC; M, ~ 108 M).
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Effect of the LMC on the Sagittarius stream
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Effect of the LMC on the Sagittarius stream

stream model in the best-fit (very flexible) MW potential

60 -
[ stripping time [Gyr] ] T T T 3o F T
o 1

galactocentric Z

—-a 1 \“ ok

dsol

100

Dietio

Vios.asr

-100

-200

015 T == dB/A  — pi/u}
0.20 1 1 1 1 . 1 .
=150 -100 =50 o 50 100 150

-150  -100  -50 0 50 100 150 -150  -100

[Vasiliev+ 2021]



Effect of the LMC on the Sagittarius stream

stream model including the perturbation from the LMC (M yc = 1.5 x 10! M)
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Density wake and dynamical friction

deflection of incoming stars by the moving massive object creates
an overdensity behind it, which in turn causes its deceleration [Chandrasekhar 1943]

-

possibly detected as the Pisces
overdensity [Belokurov+ 2019]
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Global perturbation: mechanism

The Milky Way is pulled towards the LMC,
but the displacement is not uniform in space.
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Milky Way reflex velocity
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Global perturbation: mechanism

The Milky Way is pulled towards the LMC,
but the displacement is not uniform in space.

Milky Way reflex velocity

velocity [km/s]

In the MW-centred reference frame, outer halo appears
to move up and acquires a dipole “polarization pattern”.
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' ’ . N-body sims [Garavito-Camargo-+ 2021,
PR e e g p see also Petersen & Pefiarrubia 2020],
f )] ’ ’ ' perturbation theory [Rozier+ 2022]



Global perturbation: predicted and observed signatures

Since the MW is pulled “down” (in z) recently,
perturbation is most visible in the north—south
asymmetry of density and line-of-sight velocities
at distances 2 30 kpc

[Erkal+ 2020; Cunningham+ 2020; Petersen & Pefiarrubia 2020]. -t L
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Sensitivity of the MW halo deformation to velocity anisotropy
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" Changes” in the orbit of Andromeda caused by the LMC

In fact, the reflex velocity of a few tens km/s
imparted on the Milky Way by the LMC

has implications even for the estimate of

the Local Group (MW-Andromeda) mass

via the "timing argument” [e.g. Pefiarrubia+ 2016].

The two galaxies are assumed to fly apart from
[nearly] the same point in the early Universe,
then turn around and are now approaching each
other. The combined mass of MW-+M31 is con-
strained by their present-day relative velocity.
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" Changes” in the orbit of Andromeda caused by the LMC

In fact, the reflex velocity of a few tens km/s
imparted on the Milky Way by the LMC

has implications even for the estimate of

the Local Group (MW-Andromeda) mass

via the "timing argument” [e.g. Pefiarrubia+ 2016].

The two galaxies are assumed to fly apart from
[nearly] the same point in the early Universe,
then turn around and are now approaching each
other. The combined mass of MW-+M31 is con-
strained by their present-day relative velocity.

The recent LMC-induced change in the relative
velocity of MW-M31 thus affects the inference
about their past orbit and mass.
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" Changes” in the orbit of Andromeda caused by the LMC

The corrected velocity implies a less eccentric orbit
of M31 and a lower Local Group mass.

Inferred Local Group mass including travel velocity of MW disk

Penarrubia+ 2016
vdM+ 2012
—— vdMGO8 Dist. + HST PM
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Dynamical mass measurements
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Constraints on the Milky Way halo shape from streams

ACDM haloes are expected to be triaxial in the outer parts, and oblate in the inner
parts; alternative models (e.g. WDM) have different predictions for the shape.
Stream modelling in the Milky Way so far has been inconclusive.
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Past trajectory of the LMC
is very sensitive to the Milky Way mass!

500 —

400 ¢

300 | e

200f
- 0.85x 102M,
100 —— 0.95x 10" M,

Galactocentric distance [kpc]

------- 1.05 x 102 M

[0}

-5 -4 -3 -2 -1 O
time [Gyr]

galaxies

Review

The Effect of the LMC on the Milky Way System
Eugene Vasiliev 230409136



Past trajectory of the LMC
is very sensitive to the Milky Way mass! a second pericentre passage is possible!
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Second-passage scenario and the plane of satellites

examples of possible past orbits

Many Milky Way satellites have similar 400 g Carina . Grusll
orbital planes [Kroupa+ 2005; Pawlowski+ 2012]: 350
. . . 300
this could be explained if they were ac- 250
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Summary

» LMC causes a deformation of the Galactic
halo, which is sensitive to the LMC mass
and to the velocity anisotropy of the halo

» constraints on the Milky Way mass profile
from modelling of stellar streams or satellites
must take into account the LMC perturbation

> relative trajectories of Andromeda and Milky
Way are affected by the LMC

» deflection of stellar streams probes the LMC
mass profile

» a plane of satellites around the Milky Way
may contain former satellites of the LMC
if it is not on its first passage
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