Eugene Vasiliev The second coming of the LMC?

2304.09136 2306.04837

AIP seminar, 22 September 2023

Introducing the participants

credit: Gaia collaboration

Introducing the participants

credit: Gaia collaboration

LMC factsheet

- \blacktriangleright stellar mass: $\sim 3 imes 10^9 \, M_\odot$ [van der Marel+ 2002]
- ▶ total mass: $\sim (1-2) \times 10^{11} M_{\odot}$ [Erkal+ 2019; Shipp+ 2021; Koposov+ 2023; ...]
- current distance: ~ 50 kpc [Pietrzyński+ 2019]
- ▶ high tangential velocity (≥ 300 km/s) [Kallivayalil+ 2006, 2014]
- receding from the Milky Way ($v_r \sim 70 \text{ km/s}$)
- just passed its pericentre, likely for the first time [?]

MDPI

Sensitivity of the inferred LMC trajectory

to the measured PM and distance

Sensitivity of the inferred LMC trajectory

to the measured PM and distance

and to the assumed MW potential and LMC mass

Masses of the Milky Way and the LMC

Initial models of both galaxies

	model	rs	r _c [kpc]	r _{vir}	M _{vir} [10 ¹¹	M _{total} M⊙]	N _{body} [10 ⁶]
/IC halo	L2 L3	8.95 11.7	160.9 220.6	150 169	1.92 2.76	2.0 3.0	2
W halo	\mathcal{M} 10 \mathcal{M} 11	15.0 16.5	500 500	260 268	10.0 11.0	11.8 12.9	7
W stars	see equations below 0.62						1

$$\rho_{\text{halo}} \propto r^{-1} \left(1 + r/r_{\text{s}}\right)^{-2} \, \exp\left[-\left(r/r_{\text{c}}\right)^{4}\right]$$

$$ho_{
m bulge} \propto (1 + r/0.2 \, {
m kpc})^{-1.8} \, \exp \left[- (r/1.8 \, {
m kpc})^2
ight]$$

 $M_{
m bulge} = 1.2 imes 10^{10} \, M_{\odot}$

$$ho_{
m disc} \propto \exp\left[-R/3\,{
m kpc}
ight]\,\cosh^{-2}\left[z/0.5\,{
m kpc}
ight]$$

 $M_{
m disc} = 5 imes 10^{10}\,M_{\odot}$

N-body simulations using GYRFALCON [Dehnen 2000], one full-res run (10^7 particles) = 40h

Fitting the present-day position/velocity of the LMC

Need an accuracy better than 1 kpc and 1 km/s for a meaningful comparison of models! Three key technical developments:

- extract smooth trajectories of MW and LMC from N-body sims;
- nonlinear coordinate transformation to "straighten" a curvilinear trajectory;
- Newton iterative method with a Jacobian determined from an ensemble of nearby orbits.

Reach an acceptable solution in 5–8 iteration (using low-res sims at the initial stages); a Jupyter notebook illustrating the method is included in the repository (zenodo/8015660).

"Replaying" the simulation using a smooth evolving potential

Snapshots from the original N-body simulation \implies a series of Multipole or BasisSet potential expansions representing both galaxies moving on pre-recorded trajectories.

Can be used to reconstruct [approximately] the orbits of all particles in the simulation, as well as any other trajectory not present in the simulation.

[Lowing+ 2011; Sanders+ 2020]

Past LMC orbits in the second-passage scenario

- ▶ previous orbital period: 6–10 Gyr ($\lesssim 10\%$ difference in the MW mass \Rightarrow $\gtrsim 30\%$ difference in period!)
- previous pericentre distance: ~ 100 kpc;
- ► more massive LMC ⇔ shorter period: dynamical friction increases the period [Kallivayalil+2013, Gomez+ 2015], but the stronger gravitational pull from the LMC more than compensates this [e.g., Patel+ 2017, 2020];
- 1/3 of initial LMC mass is lost after the first pericentre passage; present-day bound mass is another 2× lower than 1 Gyr ago.

Global perturbation of MW halo

The Milky Way is pulled towards the LMC, but the displacement is not uniform in space.

Global perturbation of MW halo

The Milky Way is pulled towards the LMC, but the displacement is not uniform in space. In the MW-centred reference frame, outer halo appears to move up and acquires a dipole "polarization pattern".

N-body sims [Garavito-Camargo+ 2021, see also Petersen & Peñarrubia 2020], perturbation theory [Rozier+ 2022]

Global perturbation: predicted and observed signatures

Since the MW is pulled "down" (in z) recently, perturbation is most visible in the north–south asymmetry of density and line-of-sight velocities at distances \gtrsim 30 kpc

[Erkal+ 2020; Cunningham+ 2020; Petersen & Peñarrubia 2020].

density polarization [Conroy+ 2021]

No difference between first- and second-passage scenarios!:(

Sensitivity of the MW halo deformation to velocity anisotropy

[see also Rozier+ 2022]

Perturbations in the MW disc

LMC induces a noticeable warp in the MW disc at distances \gtrsim 15 kpc, qualitatively similar to the observed one (but smaller in amplitude; see also Laporte+2018a,b).

Perturbations in the MW disc

LMC induces a noticeable warp in the MW disc at distances $\gtrsim 15$ kpc, qualitatively similar to the observed one (but smaller in amplitude; see also Laporte+2018a,b).

The warp will become much stronger in the future, the disc will be significantly heated, and the stellar halo will increase $4 \times$ in mass.

1. particles from the simulation:

select particles from the present-day snapshot with probability proportional to the distance between the satellite and the particle in the space of observables (sky position, PM, v_{los} , heliocentric distance), normalized by uncertainty in the satellite coordinates:

$$\mathcal{P}_i \propto \exp\left[-rac{1}{2}(\mathbf{x}_{\mathsf{sat}} - \mathbf{x}_i)^{\mathcal{T}} \; \mathsf{E}_{\mathsf{sat}}^{-1} \; (\mathbf{x}_{\mathsf{sat}} - \mathbf{x}_i)
ight]$$

then count the fraction of matching particles coming from the Magellanic system:

2. Gaussian mixture in velocity space $(PM + v_{los})$ from the simulation: build two GMMs from all MW and LMC particles within spatial region around the satellite, then evaluate $\mathcal{P}_{sat,MW}$ and $\mathcal{P}_{sat,LMC}$ from these smooth probability distributions.

3. orbit rewinding:

sample a large number of points from the observational uncertainties in the satellite coordinates;

integrate orbits backward in time in the pre-recorded smooth evolving potential extracted from the simulation to obtain the initial phase-space coordinates 10 Gyr ago;

3. orbit rewinding:

sample a large number of points from the observational uncertainties in the satellite coordinates;

integrate orbits backward in time in the pre-recorded smooth evolving potential extracted from the simulation to obtain the initial phase-space coordinates 10 Gyr ago; reweight the orbits according to the distribution functions of MW and LMC evaluated at these initial phase-space points, and count the fraction of LMC-associated orbits.

Satellites plane

Many satellite galaxies are located close to the LMC orbital plane and have similar orientations of angular momenta (a spatially and kinematically coherent structure).

Sxt

Enx

-100

Leol

Leol

150

100

50

z o

 -5σ

-100

些980-200

-150

Satellites in the first- and second-passage scenarios

 $\mathcal{L}3 - \mathcal{M}10$, second passage

Satellites plane from the accretion of the Magellanic system?

This analysis suggests that many of the satellites belonging to VPOS *may* have been accreted during the previous passage of the LMC (in the second-passage scenario), but does not address the question how likely is this scenario itself.

Summary

- ► LMC is currently only marginally bound to the Milky Way ⇒ past orbit is very sensitive to small changes in its observed velocity or the assumed Galactic potential.
- A second-passage scenario with a previous pericentre at ~ 100 kpc some 6–10 Gyr ago is *possible*, but not *mandated* (it mainly depends on the Milky Way mass).
- ▶ Perturbations in the Galactic halo or disc are produced very recently ⇒ contain no information about previous passage.
- Many satellite galaxies (in particular, belonging to the satellite plane) have a considerable chance of being accreted from the Magellanic system.
- The simulations presented here should be viewed as a proof-of-concept, and need to be followed by a more cosmologically motivated setup (e.g., filamentary accretion?).