The unquiet neighbour: how the LMC bugs the Milky Way

Eugene Vasiliev

University of Surrey

Leibniz Institute for Astrophysics, Potsdam, 5 September 2024

The unquiet neighbour:

LMC rotation in Gaia DR2 [credit: ESA/Gaia/DPAC, 25/04/2018]

eibniz Institute for Astrophysics, Potsdam, 5 September 2024.

The unquiet neighbour:

Leibniz Institute for Astrophysics, Potsdam, 5 September 2024

The unquiet neighbour:

Caspar David Friedrich - Eismeer

Introducing the participants

stellar mass total mass peak v_{circ} disc scale radius distance to centre morphological type # of satellites Milky Way $\sim 6 \times 10^{10} M_{\odot}$ $\sim 10^{12} M_{\odot}$ 250 km/s 3 kpc 8 kpc barred spiral ~ 30

LMC

 $\sim 3 \times 10^9 \, \text{M}_{\odot}$ $\sim (1-2) \times 10^{11} \, \text{M}_{\odot}$ 100 km/s 1.5 kpc 50 kpc barred irregular? ~ 10

Introducing the participants

stellar mass total mass peak v_{circ} disc scale radius distance to centre morphological type # of satellites Milky Way $\sim 6 \times 10^{10} M_{\odot}$ $\sim 10^{12} M_{\odot}$ 250 km/s 3 kpc 8 kpc barred spiral ~ 30

LMC

 $\sim 3 \times 10^9 \, \text{M}_{\odot}$ $\sim (1-2) \times 10^{11} \, \text{M}_{\odot}$ 100 km/s 1.5 kpc 50 kpc barred irregular? ~ 10

Early studies assumed a short-period orbit

Early studies assumed a short-period orbit

With new PM from HST [Kallivayalil+ 2006], LMC seems to be on its first passage

likely produced by the encounter between LMC and SMC, which are subsequently accreted into the Milky Way

Apart from SMC, there are ~ 10 ultrafaint galaxies that are also LMC satellites. This implies that the LMC is sufficiently massive ($\gtrsim 10^{11} M_{\odot}$, Erkal & Belokurov 2020). SMC is heavily tidally stripped and is currently 1–2 orders of magnitude less massive than LMC.

D'Onghia & Fox 2016, adapted from Koposov+ 2015 using DES

Patel+ 2020, using Gaia DR2 PM

Stellar tidal streams in the Milky Way

SDSS field of streams [Belokurov+ 2006]

DECaLS+Gaia [Price-Whelan+ 2019]

GalStreams database [Mateu 2023]

Local effects of the LMC: deflection of stellar streams

Orphan–Chenab stream: no remnant, spans $> 200^{\circ}$ on the sky. Proper motion is misaligned with the stream track in the southern part of the stream due to a close encounter with the LMC.

[[]Koposov+ 2023]

Local effects of the LMC: deflection of stellar streams

LMC passes close to several other streams in the Southern hemisphere;

by analyzing the perturbations of individual streams, one may probe the total mass and even the radial mass distribution of the LMC.

Sagittarius stream: by far the largest in the Milky Way, spans the entire sky. First discovered in 2MASS [Majewski+ 2003]; studied extensively using SDSS [Belokurov+ 2006, Koposov+ 2012] and Gaia [Ibata+ 2020, Antoja+ 2020, Ramos+ 2020, 2022]. Progenitor: Sgr dSph (third-largest MW satellite after LMC and SMC; $M_{\star} \simeq 10^8 M_{\odot}$).

observations

stream model in the best-fit (very flexible) MW potential

[Vasiliev+ 2021]

stream model including the perturbation from the LMC ($M_{LMC} = 1.5 \times 10^{11} M_{\odot}$)

[Vasiliev+ 2021]

Density wake and dynamical friction

deflection of incoming stars by the moving massive object creates an overdensity behind it, which in turn causes its deceleration [Chandrasekhar 1943]

RA [deg]

Global perturbation: mechanism

The Milky Way is pulled towards the LMC, but the displacement is not uniform in space.

Global perturbation: mechanism

The Milky Way is pulled towards the LMC, but the displacement is not uniform in space. In the MW-centred reference frame, outer halo appears to move up and acquires a dipole "polarization pattern".

N-body sims [Garavito-Camargo+ 2021, see also Petersen & Peñarrubia 2020], linear response theory [Rozier+ 2022]

Global perturbation: mechanism

The Milky Way is pulled towards the LMC, but the displacement is not uniform in space. In the MW-centred reference frame, outer halo appears to move up and acquires a dipole "polarization pattern". $30 \le 0$ [kgc] ≤ 60

Global perturbation: predicted and observed signatures

Measurement of the Milky Way potential

smoothly distributed populations: stellar streams. stars [nearly] follow a single orbit \Rightarrow assume dynamical equilibrium \Rightarrow density and velocity distributions constrain the potential by orbit fitting are linked through the potential $1.5 \times 10^{11} M_{\odot}$ LMC True mass $2.5 \times 10^{11} M_{\odot}$ LMC No I MC $5 \times 10^{10} M_{\odot}$ LMC Jeans eqns 120 orbit-superposition $M(\,< r_{\rm GC})\,\,(10^{10}M_{\odot})$ distribution 100 made-to-measure 80 functions 60 Perturbations in the kinematics of outer $M(< r_{\rm GC})/M_{\rm True}(< r_{\rm GC})$ 1.4 halo stars and other tracers (globular clusters, ∇ 1.2 satellite galaxies) violate the equilibrium assumption and cause an upward bias in Milky A Way mass estimates [Erkal+ 2020]. 60 80 100 120 140 160 180 200 r_{GC} (kpc)

Compensating the LMC perturbation [Correa Magnus & Vasiliev 2022]

Assumption: the MW was in a tranquil equilibrium before the unceremonious arrival of the LMC.

To reconstruct the original unperturbed state for *any* choice of Galactic potential and LMC mass:

1. Reconstruct the past trajectories of both the MW and the LMC;

2. Rewind the orbits of tracers (halo stars, globular clusters, MW satellites ...) in the evolving MW+LMC potential back in time until the LMC is far enough not to cause trouble ($\sim 2 - 3$ Gyr).

Vary the LMC mass, the parameters of the potential and the tracer DF to maximize the likelihood of the *unperturbed* (rewound) dataset.

Use two tracer populations: ~ 150 globular clusters and 36 satellite galaxies with 6d phase-space coordinates (*Gaia* EDR3 and other recent measurements) [Baumgardt & Vasiliev 2021; Vasiliev & Baumgardt 2021; Battaglia+ 2022].

Changes in satellite orbits caused by the LMC

could be quite substantial! shown are Galactocentric distances in the past 3 Gyr blue: without LMC; red: with LMC; green: energy evolution with LMC; green frame: LMC satellites

Past trajectory of the LMC

is very sensitive to the Milky Way mass and to the assumed PM!

Past trajectory of the LMC

is very sensitive to the Milky Way mass! a second pericentre passage is possible!

Satellite plane

Many satellite galaxies are located close to the LMC orbital plane and have similar orientations of angular momenta (spatially and kinematically coherent structure) [Kroupa+ 2005; Pawlowski+ 2012].

CVnI

CVnII

Sxt

Herdy

Enx

-50

-100

Leol

Leol

150

100

50

z o

 -50°

-100

990-200

-150

Classification of satellite orbits

Determine the probability of Magellanic association and the stripping time for each of ~ 60 Milky Way satellites:

Name	M_V	D	probability
Canes Venatici I	-8.6	210	
Canes Venatici II	-4.6	160	
Carina	-8.6	106	
Carina II	-4.5	37	
Carina III	-2.4	28	
Crater II	-8.2	117	-
Delve 2	-2.1	71	
Draco	-8.7	76	
Eridanus III	-2.3	91	
Fornax	-13.4	147	
Grus II	-3.9	55	-
Horologium I	-3.5	79	
Horologium II	-1.5	78	
Hydra II	-4.8	151	-
Hydrus I	-4.7	28	
Indus I	-1.5	105	-
Leo I	-12.0	258	-
Leo II	-9.6	233	
Phoenix II	-3.3	83	
Pictor II	-4.2	46	
Pisces II	-4.1	183	
Reticulum II	-3.6	31	
Reticulum III	-3.3	92	-
SMC	-16.8	63	
Tucana II	-3.9	58	-
Tucana IV	-3.5	47	
Ursa Minor	-8.4	76	
Virgo I	-0.8	91	

examples of possible past orbits

currently bound to LMC; formerly bound; MW-bound

Summary

- ► LMC is the biggest troublemaker in the dynamics of the outer Milky Way
- Its past orbit is very sensitive to the current position/velocity and the Galactic potential
- A second-passage scenario is *possible*, but not *mandated*; however, in this case...

Summary

- ► LMC is the biggest troublemaker in the dynamics of the outer Milky Way
- Its past orbit is very sensitive to the current position/velocity and the Galactic potential
- ▶ A second-passage scenario is *possible*, but not *mandated*; however, in this case...
- Several satellite galaxies could have been accreted from the Magellanic system

