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1 Introduction

SMILE1 is a software for orbital analysis and Schwarzschild modelling. The scientific
reference paper is [1]; here comes a more technical and practical guide.

As the name suggests, the program is intended to study orbits and self-consistent
Schwarzschild models in various potentials, and might also have educational purposes.
The primary applications are:

• Exploring orbits in various potentials, either given by analytical formulae or several
approximate expansions;

• Studying properties of orbits, from builtin orbit integrator or from external data;

• Constructing equilibrium models of triaxial stellar systems with given density profile
by Schwarzschild method.

As of version 2, it is not intended for modelling observational data of any kind; however,
plans exist to develop an observationally-driven Schwarzschild code, with full account of
observational errors and likelihood model search.

The program comes in two versions – GUI interactive tool (Sec. 2) and console pro-
gram with scripting support (Sec. 3). The GUI version is more suited to “exploratory”
and “educational” purposes, since it has many interactive connections between different

1Schwarzschild Modelling Interactive expLoratory Environment
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modules allowing to easily visualize the results. The console one is more appropriate for
remote and batch computations, when you know what you’re doing.

There are numerous adjustable parameters which are kept in INI file (Sec. 4.1); most
of them may be changed in the GUI, and described in the appropriate section of GUI
reference; some are not modifiable from GUI and these will be described in the section
about INI file.

The architecture of the software is designed to be as flexible and general as possible.
Some modules and blocks can be used in external programs (e.g. orbit integration and
analysis, generation of equilibrium spherical models, computation of potential and forces),
and overall philosophy is to create a layered, modular and extensible design.

The source code and compiled versions for various platforms may be downloaded from
http://td.lpi.ru/~eugvas/smile/. If you need to compile it from source, refer to
Appendix A.

2 GUI – interactive environment

The window is split into three areas – right panel contains the parameters of potential
and orbit integration, left side contains one of several tabs depending on the current
module (analysis of a single orbit, orbit library or Schwarzschild model); in the top are
the parameters for current module, the rest is occupied by plot area (again depending on
the selected task).

2.1 Right panel

Potential: Several potential types are implemented, having different subsets of param-
eters.

• Logarithmic: Φ(r̃) = ln(R2
c + r̃2);

• Anisotropic harmonic oscillator: Φ(r̃) = r̃2;

• Dehnen: ρ(r̃) = 3−γ
4πpq

r̃−γ(1 + r̃)−(4−γ);

• Scale-free: ρ(r̃) = r̃−γ;

• Basis-set expansion (BSE, see below);

• Spline expansion (see below)

• Frozen-N -body (see below).

Here r̃ = (x2 + y2/q2 + z2/p2)1/2 is the elliptical radius. The potential parameters are:

• q = y/x and p = z/x – axis ratios, should be p ≤ q ≤ 1. Define axis ratio for
potential (in case of logarithmic and harmonic) or density (in other cases).

• Mbh – mass of central black hole (point mass).

• γ (cusp exponent) – index of power-law density profile in the scale-free model or in
the inner region of Dehnen model, should be 0 ≤ γ ≤ 2.
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• Rc (core radius) – in log.potential denotes region of constant-density core, may be
zero.

• Nradial and Nangular – order of basis-set and spline expansions.

• ϵ (softening length), θ (tree opening angle) – parameters for frozen-N -body tree-code

• Nbody file – the meaning of this file depends on what is selected in the “Density”
drop-down list: an N -body snapshot for initializing the BSE/Spline/frozen-N -body
potential, or a text file describing an Ellipsoidal or MGE mass model (Sec. 4.4.2),
or a text file with the coefficients of BSE/Spline expansion (Sec. 4.4.4).

BSE (basis-set expansion, [2]) and Spline are two general-purpose potential expansions
which may be used to approximate almost any potential model. The coefficients of expan-
sion are calculated either from an analytic density profile, from a set of N point masses,
or from a smooth density profile given by an Ellipsoidal mass model or a Multi-Gaussian
expansion. The list of available density profiles includes:

• Dehnen (same as above);

• Plummer: ρ(r̃) = 3
4πpq

(1 + r̃2)−5/2;

• Perfect ellipsoid: ρ(r̃) = 1
π2pq

(1 + r̃2)−2;

• Isochrone: ρ(r̃) = 3
4πpq

3(1+a)a2−(1+3a)r̃2

a3(1+a)3
, a ≡

√
1 + r̃2;

• modified Navarro-Frenk-White (NFW) with an outer cutoff: since the original NFW
profile has logarithmically diverging mass, it cannot be used in potential expansion
directly; instead, a modification with steeper outer profile is introduced. ρ(r̃) =
C r−1 (1+r)−2 (1+r/rcut)

−1 with rcut being computed so that the total mass is equal
to the mass of a NFWmodel with concentration c (sharply cut beyond radius c). The
total mass is then normalized to unity. rcut is somewhat (but not much) smaller
than c because the cutoff is smoother, which is crucial for an efficient potential
expansion.

• Ellipsoidal mass model is a flexible way to represent arbitrary density profile with ar-
bitrary variation of axis ratios with radius (Sec. 4.4.2). It allows to provide a smooth
density model described by user-supplied mass profile from a text file, combining
advantages of a smooth density (to avoid statistical fluctuations in expansion coef-
ficients inherent for an N -body initialization of potential expansions) and flexibility
in potential description. The disadvantage is a longer initialization time (however,
the orbit integration time depends only on the number of expansion coefficients, not
the way they were computed; the coefficients are also stored in a text file so the
subsequent runs may re-use it).

• Multi-Gaussian expansion (MGE) is another widely-used parametrization of an ar-
bitrary density profile by a sum of gaussian components. The model is defined by
a text file, as explained in Sec 4.4.3.
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In both expansions, the angular dependence of potential and density is represented in
spherical harmonics with terms up to lmax ≡ Nangular, while the radial dependence is either
a sum of small number Nradial +1 of basis functions (in BSE) or a spline interpolation on
a grid of Nradial points in radius (in Spline). For BSE, the parameter α is controlling the
shape of radial basis functions in the Zhao(1996) basis set [3]; 0 means auto-detect, values
between 1 and 2 are reasonable in most cases. Depending on assumed type of symmetry,
only some terms in angular expansion may be used:

• None: all terms with l ≤ lmax,−l ≤ m ≤ l are used;

• Reflection: terms with odd l are zero;

• Triaxial: no terms with odd m or sin(mϕ) (implementation note: instead of eimϕ we
use cos(mϕ) for m ≥ 0 and sin(|m|ϕ) for m < 0, so this type of symmetry implies
that terms with m < 0 or m = 1 (mod 2) are zero);

• Axisymmetric: use m = 0 only;

• Spherical: lmax = 0;

The symmetry type is adjustable when initializing the expansion fron an N -body file,
otherwise it is assumed to be triaxial or higher, depending on axis ratios. If initializing
from a set of point masses or from an ellipsoidal/MGE model, the potential coefficients
are written to a filename.coef_bse/coef_spl file (Sec. 4.4.4), which may be then used
instead of the original N -body/Ellipsoidal/MGE file as an input to BSE/Spline initial-
ization.

Frozen-N -body is a representation of potential of N particles fixed in space;
Barnes&Hut tree-code is used for its computation, with tree opening angle θ (the less
its value, the more accurate is tree approximation and the longer computation time) and
softening length ϵ (may be even set to zero, since the integration uses adaptive timestep
based on acceleration, but it is not recommended as it runs terribly slow and is not op-
timal in terms of bias/variance tradeoff. A better choice is spatially adaptive softening
based on local density, which is selected by assigning a negative value to ϵ, so that the
actual softening length is |ϵ| times local mean inter-particle distance).

In the case of generic BSE/Spline and N -body potentials, the file with particle co-
ordinates should be supplied (by pressing the button Nbody file and selecting file, or
typing the filename and pressing Enter). The file should be in one of the known N -body
snapshot formats (Sec. 4.5). As the potential initialization may take a long time, it is
only done upon pressing the button “Init potential” or selecting the N -body file, rather
than on every change of parameters as for other potentials.

Dimensions: 2d or 3d – switch regimes; 2d is basically for studying motion in principal
planes and for Poincaré section, 3d is for real world.

Initial conditions: May specify either 3 coordinates and 3 velocities, or only energy
(switch radiobuttons at left). The latter case is primarily used in construction of frequency
map, while the former is for studying individual orbits. Torb is the period of x-axis
orbit, which is calculated automatically and used as unit of time in integration time and
frequency analysis.
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Remember that for scale-free and harmonic potential E > 0, for Dehnen and
BSE/Spline/Nbody E < 0, for log it may be arbitrary.

Calc Lyapunov exponent: If turned on, one may look at the behaviour of deviation
vector and finite-time Lyapunov exponent on the “Lyapunov” tab, and use its value in
distinguishing regular and chaotic orbits. Slows down computation approximately twice.
Not applicable for frozen-N -body potential (would give positive values anyway).

Integration time: given in units of Torb; steps per orbit affect basically only orbit
rendering, but if set too low, it may hinder to find higher-frequency spectral lines, so keep
it at least ≥ 10.

Start buttons: Start just does what is does, starts an orbit with given initial conditions
(also invoked by pressing Enter in most input lines); Random sets arbitrary IC with the
same energy and starts orbit integration. The integration is performed in separate thread,
so one may move around GUI during computation.

Part of orbit: Show i’th part out of N – if N > 1, split orbit into N equal intervals,
and performs frequency analysis and rendering only for given interval.

Save settings on exit: if checked, saves INI file with most of settings, which are
automatically retrieved upon launch.

Print: prints current figure in the left panel to a PS or PDF file.

Results text box: this message area contains the results of last operation. For orbit
integration – results of orbit classification: leading frequencies, orbit class, minimum
distance to center, frequency diffusion rate, Lyapunov exponent (if checked), fractional
conservation of energy (should tend to 0), wall-clock time for computation. For frequency
analysis and Schwarzschild modelling – orbit population, solution of optimization problem,
etc.

2.2 Left panel – tabs

2.2.1 Orbit

Orbit plot type: 2d projection of an orbit onto one of principal planes (selected by
2d plane);
3d line rendering of orbit: left mousebutton – rotation, Ctrl+left – move, mousewheel –
zoom;
3d mesh rendering of orbit as a solid body (using Delaunay tesselation performed by an
external program qdelaunay, in a separate thread – so it is available after some delay
upon finishing of integration);
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3d mesh parameters: Here one may choose to display entire orbit or just a half of
it lying above one of principal planes, and also specify the maximal segment length of
facets (if it was unlimited, any orbit would look like a convex blob; setting it too large
will remove details, too small – create holes; it is automatically selected based on typical
segment length of trajectory). To apply changes, press Refresh ([re]starts the tesselation
thread).

Load/save orbit to a text file (Sec. 4.4.5).

2.2.2 Poincaré

Poincaré section is an useful tool for studying orbital structure of 2d systems. (It may be
used in 3d, but is mostly meaningless). Needs to be turned on by corresponding checkbox.

Each orbit integration adds a series of points with a new color to the plot (a point
of x, vx coordinates corresponds to the passage of y axis with vy > 0). Regular orbits
have these points grouping in one-dimensional cycles; chaotic ones have scattered set
of points in two-dimensional regions. Red outer curve marks the equipotential surface
(where vy = 0).

Plot may be zoomed in by left mousebutton, Ctrl-right zooms out, middle button
moves. Right click within the equipotential boundary sets up the initial condition (x
and vx are taken from the plot, y = 0, and vy is calculated from the given energy). (To
integrate the orbit, press Enter thereafter).

Changing the energy clears the plot (as does the eponimous button). One may also
export its content to a text file.

2.2.3 Frequencies

Displays spectra of orbit in three coordinates (blue – x, green – y, red – z), frequencies
measured in units of inverse X-axis orbit period. Vertical lines show detected spectral lines
(white – by precise Hunter method, black – by non-refined Carpintero&Aguilar method
which is accurate to within Nyquist frequency; the latter is used when Hunter method
produces divergent results, typically for very nearby lines). Lines may be turned off by
checkbox. Left mousebutton zooms, middle button moves, right click zooms out.

2.2.4 Lyapunov

Displays quantities used to estimate Lyapunov exponent of an orbit, in the case that it
is calculated (then the evolution of deviation vector w is computed along with the orbit
integration)

X axis is for time (in Torb time units); left Y axis is for finite-time estimate of Lyapunov
exponent Λ = Torb ln(|w|)/t (relative, i.e. normalized to unit frequency), in blue; right Y
axis is for deviation vector divided by time, |w|/t, in red; both axes are logarithmic.

For regular (part of) orbit Lyapunov exponent decreases as t−1, and deviation vector
grows linearly, so the red line is horizontal. When chaos starts to appear, Λ fluctuates
around non-zero value, and w grows up. (See Fig. 4 in [1] for explanation).
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2.2.5 Frequency map

Here one may study an ensemble of orbits by means of frequency map (and other tools).
Frequency map is typically built for given energy (specified in the right panel); how-

ever, one may also view orbit library from Schwarzschild model, in this case View shell
spinbox selects the energy level from Schwarzschild grid (0 means display all orbits).

To create FM, one specifies the number of points in the start-spaces:
stationary (initial conditions on the equipotential surface with zero velocity),
principal-plane (on three principal planes),
Y − α (on y axis, with velocity perpendicular to it, as in Schwarzschild 1982),
random (yeah, anything you like! Ergodic within the energy hypersurface).
Or, alternatively, one may use an existing start space loaded from a file. In this case,
setting 0 as the integration time (in the right panel) forces to use the values for each orbit
written in the orbits file (otherwise they are overridden with the settings in GUI).

Start button starts the orbit integration in several parallel threads (their number being
based on the number of processor cores). Once started, this button serves to terminate
prematurely the threads (after each one finishes its current orbit).

Import/Export loads/stores data in the Orbit Library format (Sec. 4.2). The cur-
rent configuration is kept along with the orbits file in the corresponding .ini file and
automatically loaded during import.

The main area displays plots based on the selected radiobutton in the top-right array:

• Frequency map: each orbit is represented by point which coordinates are ωy/ωx

and ωz/ωx (for 3d) or simply ωx and ωx (for 2d), where the ωs are the leading
frequencies in each coordinate. 3d map also is decorated with a dozen of most
important lines representing resonant or thin orbits (most notably, (0, 1,−1) line
for long-axis tubes (LAT) and (1,−1, 0) for short-axis tubes, SAT).

• Histogram: cumulative distribution function of either of two chaos indicators.

• Start-space (stationary, principal-plane, and Y −α) – points from the correspond-
ing start space are plotted in 2d projection.

The points in the plot are colored in blue (regular) or red (chaotic), based on the
criteria in the chaos criterion section: an orbit is termed to be chaotic if it has either the
frequency diffusion rate δω larger than the threshold given, or if its Lyapunov exponent Λ
is larger than the threshold (usually 0, since all orbits with positive exponents are chaotic;
if it was not computed, this has no effect).

The coloring depends on only one of these two criteria (select appropriate radiobutton),
but the labelling of an orbit as chaotic happens if either of them is satisfied. This labelling
is important in Schwarzschild modelling, and in calculation of fraction of chaotic orbits.

View shell setting enables to filter out only orbits whose initial conditions place them
in a particular energy shell of the Schwarzschild model (0 shows all orbits).

Only nonzero weight checkbox filters out only the orbits with nonzero weights in
the Schwarzschild model (and for the cumulative distribution histograms, the weight of
each orbit is also taken from the model). If in addition view shell is set nonzero, only
the orbits from the corresponding energy shell are shown.

In the frequency map and spart-space chart one may right-click on the plot and select
the nearest orbit, which set the initial conditions and displays some information about
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the orbit. Pressing Enter one may then re-integrate the orbit. Additionally, zoom, move
and unzoom on frequency map is the same as in Poincaré plot.

2.2.6 Schwarzschild model

Orbit library tab specifies how many orbits are in the model (with randomly assigned
initial conditions over the entire range of energies). Number of sampling points specifies
how many points drawn randomly from each orbit trajectory will be stored in .sam file
for subsequent creation of N -body initial conditions. If you do not plan to create N -body
model, may set it to zero. Import/export SM buttons does the same as for Frequency
map, but in addition .schw and .smpl binary files are stored (Sec. 4.3). Start button
initializes SM , creates initial conditions (if use existing start-space is unchecked) and
begins orbit integration in parallel threads.

Create N-body initial conditions button generates a N -body representation of
the Schwarzschild model, where particles are drawn from sampled points, their number
proportional to orbit weight. If there are insufficient points for a particular orbit (that is,
if its weight w is greater than Nsampling points/Nbodies), this orbit is set to be reintegrated for
the same time interval, but collecting more sampling points. The reintegration is supposed
to recreate the same orbit, but sometimes it may turn out to be different (e.g. if using
Lyapunov exponent calculation, with initial deviation vector generated randomly), so it’s
best to avoid such situation. On average, one needs to have at least 10Nbodies/Norbits

sampling points per orbit.
There is an option to create N -body model with unequal mass particles (“mass refine-

ment”), so that the innermost particles are lighter. If the refinement factor Rf > 0, the
orbits are sorted in energy and binned into Rf +1 bins, yielding approximately the same
number (not mass) of particles each. Particle masses in each bin differ by a factor of two.

The N -body model is exported in one of the supported snapshot formats (Sec. 4.5).
Then some statistical quantities are calculated, including virial ratio and average position
and angular momentum (for the entire model, and for particles within half-mass radius
shown in brackets).

Model parameters tab contains the choice of SM variant, which should be made prior
to starting orbit library integration itself:

• Classic Schwarzschild model: partitioning configuration space into a number of
cells, compute fraction of time each orbit spends in each cell. Parameters: Number
of shells in radial direction, number of lines splitting each of three segments of
each shell (so the number of cells in a shell is 3n2

lines, and total number of constraints
is 3n2

lines nshells).

• SHGrid: evaluating coefficients of spherical-harmonic expansion of the potential
at a number of radial grid points (conceptually similar to Spline expansion, except
that no splines are constructed, just the values at grid nodes are used). Parameters:
number of radial shells, number of angular coefs (= lmax, so that the number of
terms in each shell is (lmax/2 + 1)(lmax/2 + 2)/2 since only terms with even l are
used).

• BSE: evaluating coefficients of BSE expansion of every orbit. Parameters: num-
ber of angular coefs (same as above), radial coefs (equivalent to nradial in BSE),
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α parameter of BSE (may set 0 for auto-detect). Total number of constraints is
(nradial + 1) (lmax/2 + 1)(lmax/2 + 2)/2.

Note that the SM variant chosen here doesn’t need to be related to the potential used
in orbit integration. However, if they are related (SHGrid SM and Spline potential, or BSE
SM and BSE potential with the same value of α), this is used to speed up initialization
of model constraints (often very substantially).

Regardless of the variant chosen, there is still a radial grid used for recording kinematic
data (that is, radial and tangential velocity dispersion of each orbit in each radial shell),
which may be used in optimization to constrain velocity anisotropy. For the first two
methods, this radial grid coincides with the partitioning of configuration space for the
model itself; for BSE it is not related to the number of radial BSE coefficients. Using
anisotropy profile adds nshells constraints to the optimization problem.

Inner and outer shell mass specify which fraction of total model mass (which
should be finite) is contained in the innermost and outermose radial grid node; 0 makes
the default choice of Mouter = 1 − 1/(Nshell + 1), Minner = Mouter/Nshell. If the requested
inner shell mass is smaller than 1/Nshell of the total mass of SM (which is Mouter times
the total mass of this density model), then a non-uniform, exponentially spaced grid in
shell masses is constructed.
The total weight of all orbits is required to match the total model mass, not the mass
within the outermost grid shell. Initial conditions for particles cover the energy range
from the lowest possible energy (unbounded for models with a black hole) to the binding
energy of zero; thus some orbits are deliberately assigned to lie (mostly) beyond the grid,
thus ensuring that the total model mass could be more than Mouter.

Optimization tab contains several parameters controlling the solution of optimization
problem (see Sec. B.6 for the formulation of this problem).

Constraint penalty is the contribution to the objective function penalizing the con-
straint violation. If it is zero, the constraints must be satisfied exactly (not recommended).
If it is positive, this is the factor α in the penalty function (47). If it is negative, its ab-
solute value gives the relative tolerance range for the constraints β (48). Note that in
the second case the optimization problem is always feasible, even if the constraint values
are severely mismatched; therefore, a message “Optimal solution found” from the solver
doesn’t mean that the actual SM is feasible.

Regularization is the factor λ in the quadratic part of the penalty function (49),
which drives the orbits towards a more uniform weight distribution.

Chaotic penalty is the factor κ in (50) which enhances (if > 0) or reduces (if < 0)
contribution from regular orbits in the solution; its magnitude is in principle unlimited,
but if set too high, the cost of adding an unwanted orbit will overweight the cost of
constraint violation. Keeping its absolute value ≤ 1 is typically enough. Setting it to zero
produces a model without any preferences about orbit properties.

Maximal orbit weight may be used to limit the weight assigned to each orbit by
the solver (setting it too low will, of course, result in infeasibility of solution, so it only
makes sense to adjust it in the case that a few clear outliers are seen, particularly in linear
optimization). 0 turns off this constraint.

Constrain anisotropy option adds constraints to optimization problem, forcing the
average velocity anisotropy coefficient β in each shell to equal a predefined value. Its

10



value is linearly interpolated with the enclosed mass from βin in the first shell to βout in
the last shell.

The optimization problem may be solved either by linear or quadratic programming
using the interior-point method. There are several solvers available: GLPK library (LP
only), Python-based CVXOPT module (LP/QP), or BPMPD, external solver available
from Cs.Mészáros (LP/QP). In general, QP is a preferred method since it tries to make
the distribution of orbit weights more uniform, penalizing “outliers” with high weights.

When the solver has processed the optimization problem, its results are displayed in
info box in the right panel, including the number of infeasible constraints (if the problem
cannot be solved), and a few quantities indicating the quality of solution (entropy – a
measure of non-uniformity of orbit weights, ratio of max to average orbit weight, and
fraction of orbits comprising 50% of total model mass).

Export grid button creates a text file with statistics about the solution (after it was
obtained). This file format is described in Sec. 4.4.6.

View options switch between various plots:
Grid cell displays the model constraints (blue for feasible, red for infeasible, for which
the difference from the required value is > 1%). The meaning of coefficients depends
on the variant of SM . For classic SM , it is mass in corresponding spatial cell, which
are displayed in a projection on the 2d plane similarly to stationary start-space points
(for each radial shell separately, or together). For SHGrid and BSE variants, these are
coefficients in expansion, arranged in 2d array so that each line shows spherical-harmonic
coefficients for given radius (in SHGrid) or index of radial basis function (for BSE); they
are further separated in groups of 1, 2, 3, ... coefs for l = 0, 2, 4, ..., each group having
l/2 + 1 coefficients for m = 0, 2, ..l. Right-click on a cell displays some information in the
message area.
Anisotropy shows the value of β for each radial shell (horizontal axis is the shell number).
Orbit weights are shown with the horizontal axis being the orbit number; regular and
chaotic orbits are colored blue and red. Right-click on a point does the same as in
frequency map plot.
Weight histogram displays these weights as a cumulative distribution function. If it
has only a small percent of orbits at the right end of the plot, this signals that the model
is over-constrained or even infeasible.
For Classical SM one may display any particular grid shell or the entire model (in the
latter case all cell centers at all radii are simultaneously projected on the plot, which may
be confusing but allows to quickly identify infeasible ones). For the other two variants all
constraints are displayed simultaneously on a two-dimensional plot.

3 Console scripting

The console variant may perform the same set of operations either using interactive com-
mands entered in the command prompt, or feeding them as a script from a text file (by
running smilec scriptfile). Below follows the command reference (spelling is case-
insensitive).

Exit. Obvious (not necessary in a script file).
ReadIni("file.ini") (or LoadIni, ReadConfig, LoadConfig) normally should be
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the first command in a session (unless one is satisfied with default parameters loaded
from smile.ini).

ImportOrbits("orbitsfile") (or LoadOrbits) loads orbit library from text file;
ExportOrbits("orbitsfile") (or SaveOrbits) stores orbit library (after building fre-
quency map, etc.). Equivalent to the Import/Export buttons on the Frequency map
page of the GUI version, with the difference that the “Export” command does not auto-
matically store configuration in accompanying orbitsfile.ini file (since the configura-
tion anyway has to be loaded from an ini file prior to computations). Loading an orbit
library, however, includes an attempt to load a corresponding ini file.

ImportModel("orbitsfile"), ExportModel("orbitsfile") – same as above, but
also load/stores binary files orbitsfile.schw (with SM data arrays for each orbit) and
orbitsfile.smpl (with sampling points from trajectory), see Sec. 4.3. Equivalent to
Import/Export buttons on Schwarzschild page, again without saving an ini file on
export.

ExportPotential("potentialfile") creates a text file with potential data described
in Sec. 4.4.7. If an orbit library was loaded, the potential/forces/density is also sampled at
the location of points of the library and stored in a separate file <potentialfile>.points,
and if the potential is BSE or Spline, its coefficients are stored in <potentialfile>.coefs

ExportNbody(NumberOfBodies, "nbodyfile"[, "Format"[, RefineFactor]])

creates the N -body representation of SM and writes a snapshot file in the given format
(variants include “Text”, “Nemo” and “Gadget”, the latter is available only if the
program was compiled with the UNSIO library; see Sec. 4.5). Refine factor may be used
to create a model with unequal particle masses, having a finer mass resolution in the
centre. Default is the text format and a zero refine factor.

BuildFreqMap creates an orbit library with the number of points specified in
the Frequency_map section of INI file, for the energy given in the Orbit section.
BuildFreqMapExist integrates the orbits with the initial conditions loaded earlier from
an orbit library file.

BuildSchw (or BuildModel) and BuildSchwExist do the same except that first a
model instance is created (with the grid parameters specified in the Schwarzschild_model
section of INI file), and the SM data (such as velocity dispersion, cell mass fraction
or potential expansion coefs, depending on SM variant) and sampling points are also
recorded. They later can be saved by ExportOrbitsSchw command.

SchwLinear, SchwQuadratic start the corresponding solver routine, after the model
has been loaded by ImportOrbitsSchw or created by BuildSchw.

4 File formats

Non-bulky data is kept in text files (with tab- or space-separated values). The most
important is the orbit library file, which contains initial conditions and results of analysis
for a set of orbits. It is accompanied by a configuration (INI) file which contains all the
necessary information about this orbit library (potential, integration parameters, chaos
criteria, etc.). Some text file formats are only for export purposes.
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4.1 INI parameters

Here is the list of all options and parameters in the configuration file smile.ini (and
their default values).

[Potential] – potential properties and integration accuracy.
Type – variants: Logarithmic (default), Harmonic, Dehnen, Scale-free, Scale-free SH,

BSE, Spline, Nbody.
Symmetry – None, Reflection, Triaxial (default), Axisymmetric, Spherical.
DensityModel – for BSE/Spline potentials, this is the underlying density model used

to compute coefficients. Variants: Dehnen, Plummer, Perfect Ellipsoid, Isochrone, NFW,
and three other options which load or compute coefs from a text file given in NbodyFile:
Coefs means that pre-computed coefficients are loaded from that text file (Sec. 4.4.4),
Nbody – coefs are calculated from a set of point masses stored in that file (Sec. 4.4.1), and
Ellipsoidal or MGE – calculated from an Ellipsoidal mass model or a Multi-Gaussian
Expansion specified in the text file (Sec. 4.4.2 and 4.4.3).

NbodyFile – for treecode N -body potential this is the name of file with set of point
masses, for BSE/Spline potentials it may be any of the above described three kinds of
text files.

N_dim (3) – 2 or 3.
q_YtoX, p_ZtoX – y/x and z/x axis ratio, must be p ≤ q ≤ 1.
Mbh (0) – central point mass (supermassive black hole).
Rc (0) – core radius of logarithmic potential, or concentration parameter (effectively

cutoff radius) for NFW potential.
Gamma (1) – index of power-law cusp for Dehnen and scale-free potentials.
Alpha (0) – shape parameter in BSE potential; 0 means auto-detect, allowed range

is 0.5−∞, preferred values are 1− 2.
Ncoefs_radial, Ncoefs_angular (10, 6) – number of radial and angular terms in

BSE, Spline and Scale-free SH potential expansions (for analytic density models which
have at least triaxial symmetry, the number of angular coefs lmax is even; 0 means spherical
model only).

treecodeEps (-2) – ϵ, softening length used in frozen-N -body integration. Negative
means adaptive softening based on local interparticle distance.

treecodeTheta (0.5) – tree opening angle for N -body potential.
accuracyRelative, accuracyAbsolute (1e-10) – accuracy parameters for the 8th

order Runge-Kutta integrator (all potentials except N -body).
accuracyTreeCode (0.25) – η, factor in timestep selection for the leap-frog inte-

grator used for the N -body tree-code potential. The timestep is taken to be τ =
η×min(l/v,

√
l/a), where l – distance to nearest particle, softened (i.e. it is

√
l2true + ϵ2),

v – particle velocity, a – acceleration.
treecodeSymmetrizeTimestep (false) – whether to use Hut et al.(1995) [6] algo-

rithm for time-symmetrizing adaptive timestep, to improve energy conservation at the
expense of almost twice as slower integration.

splineSmoothFactor (1) – value of ∆AIC (40) determining the amount of smoothing
of spline coefficients initialized from an N -body snapshot.

splineRadiusMin, splineRadiusMax (0) – determines the extent of the radial grid
in spline potential; 0 means compute by default.

[Orbit] – single orbit integration properties.

13



x, y, z, vx, vy, vz – initial conditions (IC).
E – IC energy.
useE (false) – whether to use energy or coordinates (in the former case, x is initial-

ized to be long-axis radius for given E. Makes sense for building frequency map at given
E).

intTime (100) – integration time in units of long-axis period (Torb). Zero value
means using per-orbit data stored in orbit library file, when integrating orbit library with
pre-loaded initial conditions.

stepsPerPeriod (50) – output timesteps per Torb: determines the maximum orbit
frequency which can be detected, and the smoothness of rendered orbit. Has nothing to
do with integration accuracy.

calcLyapunov (false) – whether to compute Lyapunov exponent.
calcLyapunovMethod (1) – the choice of method for computing Lyapunov exponent:

1 – integration of a nearby orbit, 2 – variational equation. The latter option is typically
slower but potentially more reliable.

usePS (false) – whether to use Poincaré surface of section (makes sense only in 2d).
intTimeMax (0) – maximum integration time (in Torb) if Pfenniger’s adaptive method

[9] is used (only in the context of Schwarzschild modelling; 0 to disable). [currently
unused].

adaptiveTimeThreshold (0.05) – controls the Pfenniger’s method: if difference in
SM constraint values between two halves of integration time exceeds this threshold, con-
tinue integration further until this difference becomes less or the maximum integration
time is reached. [unused]

[Frequency_map]

numOrbitsStationary, numOrbitsPrincipalPlane, numOrbitsYalpha,

numOrbitsRandom – number of points in corresponding start spaces.
[Schwarzschild_model]

densityModelType – Classic, BSE, SHGrid.
numOrbitsRandom (10000) – number of orbits in the entire model.
numShells (25) – number of radial shells (used to store velocity dispersion informa-

tion in all variants of SM , and to partition configuration space in Classic SM).
linesPerSegment (3) – in Classic SM , split each shell into 3 × (linesPerSegment)2

cells.
numRadialCoefs (25) – in BSE and SHGrid SM , number of radial coefs or radial

grid points.
numAngularCoefs (6) – in BSE and SHGrid SM , number of angular coefs (should be

even).
SMAlpha (0) – in BSE model, the shape factor in the basis set. 0 means the same

as in the potential if the latter is also BSE, or autodetect based on the potential’s inner
density slope.

chaoticMinFreqDiff (1e-3) – threshold in frequency diffusion rate (∆ω) separating
regular from chaotic orbits. Used to plot them in different colors on the frequency map,
and to increase or reduce fraction of chaotic orbits in Schwarzschild model.

chaoticMinLambda (0) – same threshold in Lyapunov exponent (Λ). If it is not
calculated, this has no effect; if it is, then the default value of 0 just separates orbits with
detected signs of chaos (Λ > 0) from those for which chaotic behaviour was not detected
(the latter are assigned Λ = 0).
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maxWeight (0) – max.weight of a single orbit. 0 means no restriction.
constrainBeta (false) – whether to constrain velocity anisotropy coefficient β in

the solution.
betaIn (0), betaOut (0.5) – values of β for the inner and the outer radial shells

(linearly interpolated in enclosed mass between these two values).
constraintPenalty (1) – α (positive) or β (negative) factors in the optimization

problem (see Sec. 2.2.6 for the description).
regularization (0.01) – λ factor (49) which drives the distribution of orbit weights

towards a more uniform one.
chaoticPenalty (0) – if positive, penalize usage of chaotic orbits; negative – prefer

them. May take a continuous spectrum of values, although most of the effect is felt when
this factor is of order ±1. For larger values, the penalty for wrong type of orbits may
outweight that of violating SM constraints, so the model becomes infeasible.

numSamplingPoints (1000) – number of sampling points from each orbit that are
stored in .sam file. They are drawn randomly from the trajectory after orbit integration
is finished, avoiding duplicates if possible (i.e. if total number of points in trajectory,
intTime*intTimeStep, is larger than numSamplingPoints). The sampling points are
used in creating N -body model from Schwarzschild model, so if this feature is not used,
one may set this number to zero.

useBPMPD (true) – whether to use external solver bpmpd.exe for linear/quadratic
optimization problem. It is a lot faster on large problems than GLPK, and may handle
quadratic problems (preferred mode), but the publicly available version is limited to
small problems (approx.250 orbits). You may ask the author, Csaba Mészáros, for the
unrestricted version (as did I:-). If this option is turned off, or if bpmpd.exe executable
is not present in the application dir, then GLPK library is used as the linear solver and
CVXOPT, written in Python, as the quadratic solver (if the program was compiled with
its support; to use CVXOPT also for linear problems pass 0 as regularization parameter
in the quadratic solver).

[Common] / WorkDir – default working directory name (for GUI file open/save di-
alogs).

[Common] / TempDir – directory for temporary files used to exchange data with ex-
ternal programs (qdelaunay and bpmpd).

[Common] / MaxThreads – number of parallel threads in orbit library integration (0
is default, equal to the number of processor cores).

4.2 Orbit library file

This is the main exchange format used for keeping orbit initial conditions and integra-
tion/classification results. This file type is also used to export data to N -body model
(if this is requested in addition to creation of binary NEMO snapshot file), and to load
particles representing N -body or BSE potential (in this case only 7 first fields are used).
Each line contains the following data:
x y z vx vy vz weight timeunit timestep inttime maxtime . . .

. . . energy ediff lfx lfy lfz lfdiff lambda description . . .

. . . inertx inerty inertz Lxavg Lxvar Lyavg Lyvar Lzavg Lzvar. . .

. . . L2min L2slope fitscatter fitsignificance L2circ
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First 7 fields are orbit initial conditions and mass (which means orbit weight in
Schwarzschild model, so it may be zero), in the same order as in the simple N -body
interchange file (Sec. 4.4.1). This is, generally speaking, sufficient to load any text file
containing this data as initial conditions for orbit library, although if no timeunit is pro-
vided, it will be calculated on-the-fly in the corresponding potential, which takes some
time if the number of orbits is large. For 2d orbits z and vz are zero. The other fields
are either directly derived from initial conditions or are results of orbit integration and
analysis.
timeunit is the dynamical time (period of long-axis orbit with the same energy) which
serves as the unit of time and frequency for this orbit (same as Torb in GUI); timestep is
the timestep of trajectory output.
inttime is the integration time (in common time units, not in periods), and maxtime is
upper limit on adaptive integration time (!temporarily defunct!).
energy is (initial) total orbit energy and ediff is energy conservation error.
lfx, lfy and lfz are the leading frequencies in three coordinates, and lfdiff is the
Frequency Diffusion coefficient.
lambda is the Lyapunov exponent (if it was calculated, otherwise −1).
description is the text string containing orbit class and possibly “chaotic” attribute
(based on analysis of spectrum, not a reliable estimate, see Sec. 6). This text line has
underscores instead of spaces, in accordance with the requirement that any space- or tab-
separated file may be loaded.
inert{x/y/z} are the square roots of diagonal components of inertia tensor, basically
these quantities measure the extent of an orbit in each direction (average, not maximal).
L*avg and L*var are average value and mean-square scatter of angular momentum about
each axis.
L2min and L2slope are coefficients in the linear regression fitting the distribution of
squared angular momenta at pericenter passages. If L2min=0 this means that the orbit
is centrophilic. The next two parameters, fitscatter and fitsignificance, assess the
quality of fit (see Sec. B.5 for the details of the algorithm). L2circ is an approximate
squared angular momentum of a circular orbit with this energy (useful scaling parameter
for L2min).

The orbit data make sense only in conjunction with corresponding potential, so each
orbit library file is accompanied by INI file. Upon import, first INI file (if exists) is read
(only in the GUI version), the potential is initialized, then the orbit library is loaded.
Exporting orbit library also creates INI file.

4.3 Binary files

There are two kinds of binary files used in Schwarzschild modelling module: one (.schw)
contains the data for SM (its content depends on the variant of SM chosen), the other
(.smpl) contains sample points from trajectory of each orbit, used to generate an N -body
snapshot from a SM .

Two alternatives for binary data storage are implemented: the first is a structured
HDF5 file, the second is a simple binary array dump (the code can be compiled with
only one of these variants). HDF5 is a preferred storage model as it is more portable and
commonly used.

If HDF5 is used as the back-end for data storage, the format is the following. For
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the Schwarzschild data file, orbits are stored in the dataset /Schw of compound records,
in which each data block is represented as a fixed-length array of necessary size with
the name of this data object. That is, for a BSE density model with 20 radial terms
and lmax = 4 (i.e. 6 angular terms), it will be an array of 20 × 6 floats with the name
BSE, plus for the shell-kinematic data with 25 radial shells another array of 25× 3 floats
with the name KinematicShell (the 3 numbers being the time spent in the shell, and
radial and tangential velocity dispersions). All orbits are required to have the same set of
Schwarzschild data objects. In the future, additional types of Schwarzschild data objects
may be stored using the same named scheme. For the trajectory sample file, the dataset
/Traj contains a variable-length array for each orbit, the elements of this array being a
6-float compound record (3 for Pos and 3 for Vel); number of sampling points may vary
between orbits. Both .schw and .smpl files have additional extension .h5.

In the alternative case of a “proprietary” data storage model, files have the following
format. In the Schwarzschild data file, for each orbit the number of data objects is written
as 4-byte integer, then for each object its type and size are stored as 4-byte integers,
followed by the bulk data array of floats. In the trajectory sample file, for each orbit
the length of sample npoints is written (4-byte integer), then the array of 6× npoints floats
representing the position and velocity points is stored.

4.4 Auxiliary text files

All text files should be tab- or space-separated. Lines starting with symbols # % are
ignored.

4.4.1 Point file

This is a simple text file for loading/storing point mass sets: each line contains
x y z vx vy vz m

It is used as an input data for initializing BSE/Spline/treecode N -body potentials, for
exporting N -body model in a text format, and also may be used to load initial conditions
for orbit library / Schwarzschild model, since it is a shortened version of orbitlib file
(Sec. 4.2).

4.4.2 Ellipsoidal model file

The Ellipsoidal mass model, which may be used as an input to BSE or, preferrably, Spline
potential, is a very generic representation of arbitrary density profile with arbitrarily
varying axis ratios. It is given by a text file containing pairs of r M(r) values describing
dependence of enclosed mass on radius; each line may also contain two more values which
are taken for axis ratio at a given radius. The density of a spherically symmetric model
is calculated as a spline interpolation of density profile from the first two columns (log
scaled in both r and ρ). Axis ratios are also spline interpolated in log radius between the
provided radial points, and assumed to be constant below the first and above the last radii
with provided values. If only one line with axis ratio values is present, they are assumed
to be constant. If no values are provided the model is considered to be spherical. The
first line of the file should contain the text Ellipsoidal.
To compute the actual density at a given x, y, z, first the spherical radius is computed;
then the interpolated values of q, p are calculated and the three coordinates are scaled

17



accordingly, so that the product of three scaling coefficients is unity. In other words,
s ≡ (qp)−1/3 is the common scaling factor, and the elliptical radius is computed as r̃2 =
(x/s)2 + (y/sq)2 + (z/sp)2. The density is then given by spline interpolated ρ(r̃). By
construction, the total model mass is not exactly equal to the mass of spherical model
given in the last line of the text file, but is typically very close to it.

4.4.3 Multi-Gaussian expansion file

Another generic representation of an arbitrary density profile is the Multi-Gaussian ex-
pansion, in which density is given by a sum of Ncomp components, each being a triaxial
Gaussian with a given scale length and normalization. This file may be used as an input
to the BSE or Spline potential expansion. The first line of the text file should contain
the word MGE, and each line contains the data for each component: rs M and optionally
q and p, where rs is the scale radius, M is the mass in this component, and the other two
values give the axis ratios. The density profile of the component is thus given by

ρ(x, y, z) =
M

π3/2pq r3s
exp

[
−x2 + (y/q)2 + (z/p)2

r2s

]
(1)

4.4.4 Potential coefficients file

Stores coefficients for BSE, Spline and scale-free SH potentials. This file is automatically
created when a potential is initialized from a point mass set, and later may be used to
load the same potential without spending time on computing the coefs. The first few lines
are the header:
BSEcoefs/SHEcoefs – specifies potential type (BSE or Spline);
n_radial – number of radial coefs or radial grid points, correspondingly; n_angular –
lmax, order of angular spherical-harmonic expansion; 0 means just one coefficient for a
spherically symmetric model;
alpha – BSE parameter (unused in Spline);
time – unused;
#commented out line (text header for the table below).
The rest of file is the coefficients table, all angular coefficients for a given radial index
(BSE) or radius (Spline) are written in one line. First number is radial coefficient index
or radius, second is the l = 0 coef (spherical part), and so on. If the number of fields in
a line is less than 1 + (nangular + 1)2, the rest is filled with zeroes; if it is greater then the
rest is ignored (so one may adjust the numbers in header without changing the table).

4.4.5 Orbit file

This file type is used to export or import trajectory; each line contains the following data:
time x y z vx vy vz

Upon import of such file, the orbit is assigned initial conditions from the first line,
and all the relevant parameters (energy, dynamical time Torb and unit of frequency) are
calculated from the current potential parameters (which, however, are not stored along
with the orbit).

May be useful to import an orbit recorded from N -body simulation, with potential
expressed as frozen-N -body or BSE taken from density profile from the same simulation,
and check how does this orbit look like if re-integrated in a fixed potential.

18



4.4.6 Schwarzschild grid statistics file

Used for export only, this file contains statistical information about Schwarzschild model
grid (and hence can be created only when a model is created or loaded). For the den-
sity constraint block, the following values are written (one constraint per line): index

required actual diff norm {decomp},
index is just the index of the constraint;
required is the required value of this constraint in the density model (e.g. the mass in
the given cell of the Classic SM);
actual is the value obtained by the orbit superposition;
diff is the difference between these two (best if zero);
‘ norm is the normalization factor used to scale the contribution of constraint deviation
to the penalty function;
decomp is the decomposition of index into readable numbers: for the Classic model, it is
the radius and x, y, z values of the cell center; for the SHGrid model, it is the radius and
l,m indices of angular expansion; for the BSE model, it is n, l,m triplet of basis function
indices.
For the kinematic constraint block, the following data is written for each radial shell:
index radius M(r) sigma_r^2 sigma_t^2,
whereM(r) is the enclosed mass in this shell, and σ’s are the radial and tangential velocity
dispersions from the orbit superposition in this shell.

4.4.7 Potential sampling file

Used for export only. Each line contains potential (Phi), density (Rho) and forces (F)
sampled at a given point.
x y z Phi Fx Fy Fz Rho

Points are logarithmically spaced in radius from 0.001 to 1000 and lie along seven
lines: principal axes, diagonals of principal planes (z = 0, y = x, etc.) and the diagonal
x = y = z. (NB: if an orbit library was non-empty, ExportPotential("...") also
creates another file in the same format, but containing potential/force/density sampled
at locations of points in orbit library). This data may be useful, for example, to test the
accuracy of BSE/Spline approximation.

4.5 N-body snapshot files

An N -body snapshot used to initialize the BSE, Spline or Frozen-Nbody potential, or
created as the representation of the Schwarzschild model, may be in one of the supported
formats. Presently, there are the following options available: a text file (Sec. 4.4.1), a
NEMO snapshot format, or a Gadget snapshot file. The latter two options are available
if the program was compiled with the UNSIO library; however, export to NEMO format
is possible without this library, using built-in routines. Reading a snapshot file during the
potential initialization determines the file format automatically.
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5 A short guide to practical Schwarzschild modelling

One of main applications of SMILE is to create equilibrium N -body models with a pre-
defined triaxial density profile (and possibly a given velocity anisotropy profile). Here we
outline the necessary steps and checks to be made.

• Choose a density profile out of existing variants, or implement one as an Ellipsoidal
or MGE mass model described by a text file. One may also use an N -body snapshot
as a Monte-Carlo realization of a density profile; however it is less preferable due to
inherent discreteness noise which translates into fluctuations of high-order potential
expansion coefficients.

• Use BSE, or, preferrably, Spline potential solver with appropriate number of coeffi-
cients. For the number of radial coefficients, 20 is a good choice in most cases; for
the angular order, it depends on the degree of flattening. A moderately flattened
model with y/x, z/x & 0.5 is fine with lmax = 6− 8, more flattened systems require
more. A good way to check whether the approximation works well is to export a
file with potential, forces and density sampled at coordinate axes and/or given set
of points (Sec. 4.4.7) and compare density with the expected profile. At the very
least, it should not oscillate wildly and drop to zero at some finite radius (a warning
will be given if this is violated).

• Construct a SM with some fiducial number of constraints and orbits. A good
starting choice is 104 orbits for a few×102 constraints, e.g. 20 radial shells and
2 − 3 lines per segment (in case of Classic SM) or lmax = 6 − 8 (for SHGrid SM).
Use Quadratic optimization solver to obtain orbit weights. The weight distribution
should ideally be fairly flat and close to uniform.
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weight
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In the example above, the innermost orbit weights are distributed quite well (many
orbits with nonzero weights), while the outermost parts of model are overcon-
strained, which results in quite a few orbits with large weight. This situation may
be remedied by using more orbits for the same number of constraints.
For some cases, a model with a given density and flattening profile may not be fea-
sible at all, no matter how many orbits one has. In this case, allowing the flattening
rate vary with radius, so that in the outer parts it is close to axisymmetry, may
alleviate the problem.
Overall, the very first condition for a good model is its feasibility (that all constraints
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are satisfied), and the second is to be underconstrained, so that many orbits are
given a similar weight and not just a few outstanding orbits are protruding above
the rest. The latter situation is not only dissatisfying aesthetically (one may clearly
see these high-weight orbits in the N -body realization), but also unwelcome for the
stability of the model. Therefore, it is better to have a model with fewer constraints
and a “relaxed” weight distribution, than the one in which a multitude of constraints
are barely satisfied with a few orbits.

• Export the model to N -body snapshot. Again, ideally one should not have too
many sampling points per orbit, say, . 100 for all but a few orbits. This means
that, for instance, to get a 106 particle model, one will need few×104 orbits with a
reasonably flat weight distribution.

This can be summarized by the following script for the console version (assuming that
all relevant parameters are specified in the .ini file):

# read input parameters

LoadIni("model.ini")

# create orbit library and Schwarzschild model data, this takes most of the time

BuildSchw

# save results, orbit weights are not assigned yet

ExportModel("model")

# do the optimization

SchwQuadratic

# save results once again, now with orbit weights

ExportModel("model")

# export model to a NEMO N-body snapshot

ExportNbody(1e5, "model_nb", "Nemo")

6 Known bugs, subtleties and limitations

• All analytic density models assume triplanar symmetry w.r.t. change of sign of any
coordinate. For the general-purpose expansions (BSE/Spline) and frozen-N -body
potential it is not necessary: one may choose the desired level of symmetry for the
expansion. If initializing it from a discrete set of points, it is crucial that the density
center is at origin (except for N -body potential, however even for it this is necessary
in order for orbit analysis to work properly), and principal axes of figure should be
directed along x, y, z as longest to shortest: while the spherical-harmonic expansion
should be invariant to rotation (at least when symmetry type is downgraded to
“Reflection”) the correct ordering of axes is important for orbit analysis. None of
the potential expansion methods are expected to perform well for highly flattened
models. General-purpose expansions and the entire SM module are agnostic to
mass normalization of model, but the length scale (typical half-mass radius) should
be of order unity (i.e. not too much off, say by a factor of 10), because a number
of design choices break the invariance. Therefore, it is recommended to work in
dimensionless, N -body units, rather than in parsecs, for example.
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• BSE/Spline expansions assume smooth density profiles and a power-law density
behaviour at r → 0 with the index γ ∈ [0, 2) (they still work pretty well for γ = 2,
but not for steeper profiles which have divergent potential at origin). Inner and
outer density asymptotics are assumed to be power-laws, which may introduce some
systematic errors for other type of profiles (such as Sérsic), but they are negligible
for a sufficient number of terms. Density is assumed to fall monotonically with
radius. This also means that any user-defined density profile should be devoid of
sharp jumps or abrupt drops to zero.

• Chaotic attribute in the orbit description should not be relied upon (it is added
when there are lines in spectrum that cannot be fitted as a linear combination of no
more than N dim fundamental frequencies, but sometimes the accuracy demanded
might be too stringent or too weak). A better indicator is the Frequency Diffusion
parameter or Lyapunov exponent. Moreover, in the case of two very nearby spectral
lines the method often gets confused and assigns “chaotic” attribute (and even a
rather high frequency diffusion rate) to a regular orbit. This typically may be
overcome by setting a longer integration time, to better resolve these nearby lines.

• Scale-free potential and its BSE approximation are implemented only for 0 ≤ γ < 2.
In addition, variation equation option for computing Lyapunov exponent is not
implemented for scale-free potential, only for its BSE variant. This is not a severe
restriction, as the approximation works fairly good and much faster, so it is the
preferred option.

• Computing Lyapunov exponent by integration of nearby trajectory is possible for
all potentials (except N -body, of course), and this is the recommended option
(calcLyapunovMethod=1 in the INI file), since it is usually faster than variation
equation approach. Only for orbits close to the black hole may it give incorrect re-
sults: a regular orbit seems to have nonzero Lyapunov exponent, which is probably
due to roundoff errors in keeping these nearby orbits really near. So to study these
orbits, one should use “true” variation equation approach (Update: even in this case
“chaotic” attribute may be triggered on erroneously for some tightly-bound orbits,
requires further study).

• Since floating-point values are stored in text format (in Orbit Library file), some-
times it may happen that re-integration of the same orbit gives a different result.
(This definitely may happen if Lyapunov exponent is used, since the deviation vec-
tor is initalized randomly). Although some measures were taken to diminish the
possible damage of this effect, one should still keep it in mind. In addition, orbits
with the same initial conditions may be different on different machines.

• Inner and outer extrapolation in Spline potential is not twice continuously differen-
tiable at the first/last grid nodes; this may trigger false positive Lyapunov exponent
for an orbit which extends beyond the last grid node. (Perhaps a lower-order inte-
grator could be used for this potential).

• On 32-bit systems, there seems to be an issue with inefficient memory management
which leads to fragmentation of the application heap during Schwarzschild model
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construction; as a result, the program may run out of memory even if the orbit
library size is not very large and could well fit into the 2Gb limit.

• Energy conservation is far from perfect for orbit integration in the N -body po-
tential with adaptive softening length; it is somewhat improved by using timestep
symmetrization.

7 Version history and future plans

• 1.0 (2010), 1.1 (2011) – for internal use only.

• 2.0 (July 2013) – first public release.

Ideas waiting to be implemented:

• Observationally-driven Schwarzschild modelling;

• Full support for figure rotation in potentials;

• Option for using modified Newtonian gravity;

• Implementation of orbit integrator using GPU acceleration;

• Refactor the computation core and parallelization strategy to migrate from Qt
threads to OpenMP plus optionally MPI;

A Program structure and compilation

The main program is written in C++ using the Qt framework (for the GUI and for other
features like inter-object and inter-thread communication), so it should compile wherever
Qt is supported (at least Linux, Windows, and MacOS). Some mathematical parts (in
particular, orbit integration and analysis, potential solvers, spherical models) do not use
Qt and may be used independently in other programs.

In addition, a number of other libraries and software is used in SMILE (optional
components are marked with *): GSL (GNU scientific library), (*)GLPK (GNU linear
programming kit, if this option was selected as the optimization routine), (*)CVXOPT
(quadratic optimization solver, requires Python) and/or (*)BPMPD solver (as a stan-
dalone application); at least one solver should be present to perform modelling (the latter
option is the fastest one but is not publicly available, while the first two are compara-
ble in speed and are free software). Data input/output uses (*)NEMO, (*)UNSIO and
(*)HDF5 libraries. GUI version needs Qwt (version 5.x, not 6) and (*)QwtPlot3d2 li-
braries for plotting, and (*)qdelaunay program from QHull package (to render an orbit
as a solid body).

Build is typical for Qt applications – check the project include file smile.pri (common
for GUI and console versions) for correct paths to libraries (INCLUDEPATH, LIBS), run
qmake (from qt4!), then make. There is a global Makefile, which compiles both versions
of SMILE and additional programs described in Sec. C; you may try it.

2On some systems, it may be called qwtplot3d-qt4
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On Mac, one might need to run qmake -spec macx-g++ to use GNU compiler.
qdelaunay (compiled separately) and bpmpd.exe should reside in the main application
folder (the latter is windows-only binary, so it is run using wine in Linux/MacOS).

The architecture of SMILE is rather modular and flexible, with common interfaces
between various parts allowing for replacement of internal implementation or augmenting
the functionality. More information on the internal structore of the software can be found
on the documentation webpage: http://td.lpi.ru/~eugvas/smile/doc/.

This program includes code from Hairer et al. DOP853 Runge-Kutta integrator, sub-
stantially reworked tree-force potential solver hackcode by J.Barnes from NEMO toolbox,
and simplified NEMO snapshot writer by S.Rodionov. Everything else is written from
scratch. You may use any part of the program in any your project.

B Technical details on the algorithms and formulae

used

B.1 Frequency analysis

Orbit classification requires detection of most prominent spectral lines in Fourier spectrum
of trajectory in each coordinate. Here we summarize the method used to extract spectral
lines.

We start from computing complex Fourier transform ci, i = 0..[N/2] of input time
series xk, k = 0..N − 1. At each iteration, we locate the most prominent line in the
spectrum and then subtract it from ci, until the maximum number of lines has been
reached or the amplitude of lines drops below a certain fraction of the amplitude of the
first line. First we locate the integer index m so that |cm| has the maximal value over
the remaining spectrum, and then find a fractional correction s so that the exact location
of line is m + s. If possible, the correction is determined by a more precise method of
Hunter(2002) [7] with Hanning window filtering; if not a more approximate method of
Carpintero&Aguilar(1998) [8] is used. [TODO: explain more details].

After all prominent lines have been determined for all d coordinates, we search for at
most Nd fundamental frequencies Ωk so that all line frequencies are expressed as linear
combinations of these (within a certain tolerance): ωd,j =

∑Nd

k=1 adjkΩk with integer adjk.
If no such decomposition is possible then an orbit must be chaotic (or the frequencies
were not properly determined, which may happen if two lines are too close to become
aliased). Furthermore, if the most prominent lines in each coordinate happen to be in
resonance (

∑Nd

d=1 rdωd,0 = 0 with integer rd), the orbit is called a thin (r1, r2, r3) orbit. If
one of these integers is zero then the orbit is a commonly defined “resonant” orbit (e.g.
r1 = −r2 = 1, r3 = 0 corresponds to 1:1 z-tube, although to classify an orbit as a genuine
tube we furthermore require that the sign of angular momentum component about this
axis is conserved).

B.2 Spherical mass models

A spherical model is specified by an array of N pairs: ri,Mi, i = 1..N , where Mi ≡
M(< ri) is enclosed mass, and M0 ≡ M(r = 0) is the central point mass (possibly zero).
Alternatively, for Spline potential model we have pairs of ri,Φi giving potential as a
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function of radius (excluding the central point mass). We assume that density is a power-
law function of radius inside r1 and outside rN , with slopes γin and γout, correspondingly.
Spherical models are used throughout SMILE in two flavours: a) as a base for Spline
spherical-harmonic potential approximation (in this case the input data is r,Φ(r) and
up to second derivative of Φ must be continuous), or to compute distribution function
via Eddington inversion for a model given by r,M(r) – this is used to generate initial
conditions for Schwarzschild model, and in the standalone tool mkspherical (Sec. C.1).

The total mass M∞ can be estimated by the following argument. Integrating the
density from r to ∞ we get

M(r) = M∞ −K r3−γout , Φ(r) = −M∞

r
+

K

2− γout
r3−γout (2)

with constants M∞, K, γout to be determined. Writing this for the last three points we
obtain the relation

ln
M∞ −MN−2

M∞ −MN−1

ln
rN−1

rN
= ln

M∞ −MN−1

M∞ −MN

ln
rN−2

rN−1

(3)

This becomes especially simple if r2N−1 = rN−2rN , in which case

M∞ =
MNMN−2 −M2

N−1

MN +MN−2 − 2MN−1

(4)

This relation is used to estimate total mass for a given density model which provides a
smooth function M(r), by constructing successive approximations to M∞ at r, 2r, 4r, . . .

In the more general case, it is easier to find γout first, numerically solving

MN −MN−1

MN −MN−2

=
r3−γout
N−1 − r3−γout

N

r3−γout
N−2 − r3−γout

N

(5)

If we have Φi instead of Mi, then in the above formula we replace Mi by −Φiri. Then
M∞ is given by

M∞ =
MNr

γout−3
N −MN−1r

γout−3
N−1

rγout−3
N − rγout−3

N−1

(6)

And finally, K is obtained from (2).
The inner density profile may require more elaborate treatment. Without loss of

generality we set M0 = 0 (a central point mass may be added trivially). Basically we
need to find the density slope γin, assuming that density behaves as ρ ∝ Ar−γin(1−B r).
Then

M(r) = Ã r3−γin(1− B̃ r) , Φ(r)− Φ(0) = Â r2−γin(1− B̂ r) (7)

Here tilde/hat quantities are trivially related to A,B (we do not write it down because
we need only γin).

γin = 3−

[
ln

M2

M1

− ln
1− B̃r2

1− B̃r1

]/
ln

r2
r1

= 2−

[
ln

Φ2 − Φ0

Φ1 − Φ0

− ln
1− B̂r2

1− B̂r1

]/
ln

r2
r1

(8)

If we are happy with taking into account only the leading term (setting B = 0), then
the slope is trivially obtained from the above equation. However, the slope will usually
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be underestimated if the radii are not too small. To get a more accurate estimate, first
we compute B by solving(

ln
M2

M1

− ln
1− B̃r2

1− B̃r1

)
ln

r3
r1

=

(
ln

M3

M1

− ln
1− B̃r3

1− B̃r1

)
ln

r2
r1

(9)

with a similar modification for Φ. Then substituting B into (8) we obtain γin. This way
we use 3 instead of 2 innermost points (r0 = 0 doesn’t count), but obtain generally a more
accurate estimate for the slope (factor of & 2 closer to the true one). This is [presently?]
only used for Spline potential approximation, not for r −M(r) models.

The rest of this section is devoted to the spherical model given by r,M(r) pairs, which
must be smooth enough to give a reasonable f(E) via Eddington inversion formula. The
model is initialized by fitting a cubic spline to the scaled quantities r̃ ≡ ln r, M̃ ≡
ln[M(r)/(M∞ − M(r))], where M∞ has been found from (6). The endpoint derivatives
are set by hand (i.e. the spline is not “natural” but “clamped”) from the power-law
extrapolation of density profile at small and large radii with slopes γin and γout, estimated
from (5) and (8) with B = 0.

For the case γin = 0 an additional step is needed to accurately represent the behaviour
of distribution function at origin (since it depends on d2ρ/d2Φ and the potential is close
to parabolic, with its second derivative close to a constant). This matters only for the
construction of spherical models via Eddington inversion formula, and is irrelevant for the
potential approximation. If the estimated γin < 0.1, we assume that it is zero and instead
take ρ(r) = ρ0(1− Prα) and find the three parameters from three innermost grid points:

M(r) =
4π

3
ρ0r

3
(
1− 3

α+3
Prα

)
, Qk1 ≡

r31 Mk

r3k M1

=
1− 3

α+3
Prαk

1− 3
α+3

Prα1
, k = 1, 2, 3

α is found from (1−Q21)(r
α
3 −Q31r

α
1 ) = (1−Q31)(r

α
2 −Q21r

α
1 ) (10)

and then P = α+3
3

1−Q21

rα2 −Q21rα1
(11)

In the case γin > 0, ρ(r) is extrapolated to r < r1 using simple power-law: ρ(r) =
(3 − γin)M(r)/(4πr3). The extrapolation to r > rN is equally simple: ρ(r) = (γout −
3)Kr−γout/(4π).

The potential is evaluated at the grid points ri by integrating
∫ r

0
M(x)/x2, including

the contribution of central point mass if present. Let Φ0 ≡ Φ(0) be the potential at origin,
ifM0 > 0 then Φ0 = −∞. The scaled potential is defined as Φ̃ ≡ − ln[1/Φ0−1/Φ(r)] and it
is represented as a spline function in r̃ ≡ ln r. Again the endpoint derivatives are evaluated
from the asymptotic expressions and supplied to the clamped spline initialization.

To compute the distribution function, one needs to integrate d2ρ/dΦ2. We represent
ρ(Φ) as a spline in scaled variables ρ̃ ≡ ln ρ and Φ̃, computed at grid nodes Φi ≡ Φ(ri).
The accurate extrapolation beyond grid is crucial. For Φ → 0 we simply substitute
Φ ≈ −M∞/r to ρ(r) ∝ r−γout , and for Φ → Φ0 a more elaborate expression is needed. In
the case of a constant-density core,

dρ

dΦ
= −3αP

4π

(
3

2πρ0

)α/2−1

(Φ− Φ0)
α/2−1 . (12)
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Otherwise, we find r(Φ) numerically and then substitute power-law asymptotes for ρ(r)
and Φ(r) as r → 0.

The derivatives of ρ(Φ) are computed from the log-scaled spline as follows:

dρ

dΦ
=

dρ̃

dΦ̃

ρ

Φ(1− Φ/Φ0)
, (13)

d2ρ

dΦ2
=

ρ

Φ2(1− Φ/Φ0)2

[
dρ̃

dΦ̃

(
2
Φ

Φ0

− 1

)
+

(
dρ̃

dΦ̃

)2

+
d2ρ̃

dΦ̃2

]
(14)

The distribution function is computed by the Eddington inversion formula:

f(E) =
1√
8 π2

∫ 0

E

d2ρ

dΦ2

dΦ√
Φ− E

(15)

It is evaluated at grid points Φi and then its logarithm is approximated by a spline in
Φ̃. This quantity may turn out to be negative at some points, in this case the point
is excluded from the spline initialization (i.e. the approximated quantity will always be
positive), but an error indication is given.

B.3 Spherical-harmonic expansion

BSE and Spline potentials share the representation of angular dependence of potential and
density via spherical-harmonic expansion. We use the real-valued trigonometric functions
instead of eimϕ and introduce the convention that m < 0 terms correspond to sine and
m ≥ 0 – to cosine terms. Moreover we introduce another factor of

√
2 inm ̸= 0 coefficients,

to make the sum of squared coefficients at a given l invariant under rotations of coordinate
system. Define

ρ(r, θ, ϕ) =
lmax∑
l=0

l∑
m=−l

Alm(r)
√
4πP̃m

l (cos θ) trigmϕ (16)

Φ(r, θ, ϕ) =
lmax∑
l=0

l∑
m=−l

Clm(r)
√
4πP̃m

l (cos θ) trigmϕ

trigmϕ ≡


1 , m = 0√

2 cosmϕ , m > 0√
2 sin |m|ϕ , m < 0

Here P̃m
l (x) ≡

√
2l+1
4π

(l−m)!
(l+m)!

Pm
l (x) are normalized associated Legendre polynomials.

For the force calculation we need the first derivatives of potential:

∂Φ

∂r
=

lmax∑
l=0

l∑
m=−l

∂Clm(r)

∂r

√
4πP̃m

l (cos θ) trigmϕ

∂Φ

∂θ
=

lmax∑
l=0

l∑
m=−l

Clm

√
4πP̃m ′

l (cos θ) (− sin θ) trigmϕ (17)

∂Φ

∂ϕ
=

lmax∑
l=0

l∑
m=−l

Clm

√
4πP̃m

l (cos θ) trig′ mϕ , trig′mϕ ≡
{

−
√
2m sinmϕ , m ≥ 0√
2m cosmϕ , m < 0
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For the variation equation we need second derivatives of potential:

∂2Φ

∂θ2
=

lmax∑
l=0

l∑
m=−l

Clm

√
4π

(
cos θ P̃m ′

l (cos θ)−
[
l(l + 1)− m2

sin2 θ

]
P̃m
l (cos θ)

)
trigmϕ

∂2Φ

∂θ∂ϕ
=

lmax∑
l=0

l∑
m=−l

Clm

√
4πP̃m ′

l (cos θ) (− sin θ) trig′ mϕ (18)

∂2Φ

∂ϕ2
= −m2 Φ

(differentiation w.r.t. r is trivial substitution of Clm → ∂C/∂r in Eq. 17).

B.3.1 Basis-set potential expansion

In the BSE potential we represent the coefficients Alm, Clm as a weighted sum over basis
functions defined in Zhao(1996) [3]:

Alm(r) =
nmax∑
n=0

Anlm ρnl(r) , Clm(r) =
nmax∑
n=0

Anlm Φnl(r) , (19)

Φnl(r) = − rl

(1 + r1/α)(2l+1)α
Gw

n (ξ) (20)

ρnl(r) =
Knl

2π

rl−2+1/α

(1 + r1/α)(2l+1)α+2
Gw

n (ξ)

Knl ≡
4(n+ w)2 − 1

8α2
, w ≡ (2l + 1)α+ 1/2 , ξ ≡ r1/α − 1

r1/α + 1
,

where Gw
n (ξ) are Gegenbauer (ultraspherical) polynomials.

The derivatives of basis functions of potential are the following:

∂Φnl

∂r
=

rl

(1 + r1/α)(2l+1)α

(
Gw

n (ξ)
l − (l + 1)r1/α

r(1 + r1/α)
+

dG

dr

)
(21)

∂2Φnl

∂r2
=

rl

(1 + r1/α)(2l+1)α

{
−2

r

dG

dr
+

Gw
n (ξ)

r2(1 + r1/α)2

[
(l + 1)(l + 2)r2/α +

+
{
1− 2l(l + 1)− (2n+ 1)(2l + 1)/α− n(n+ 1)/α2

}
r1/α + l(l − 1)

]}
dG

dr
=

1

2αr

[
−nξ Gw

n (ξ) + (n+ 2w − 1)Gw
n−1(ξ)

]
The basis ρnlm,Φnlm (where [∗]nlm ≡ [∗]nl

√
4π P̃m

l (cos θ) trigmϕ) is biorthogonal,
which means that∫

dr ρnlm(r) Φn′l′m′(r) = Inl δnn′δll′δmm′ =

∫ ∞

0

dr 4πr2 ρnl(r) Φn′l′(r) δmm′ (22)

Inl ≡ −Knl
4πα

24w
Γ(2w + n)

n! (n+ w) [Γ(w)]2
(23)
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Given a certain density distribution ρ(r, θ, ϕ), one may find the expansion coefficients
by multiplying (16, 19) by Φnlm(r) and integrating over the entire space:

Anlm =
1

Inl

∫
dr ρ(r) Φnlm(r) =

1

Inl

∫ ∞

0

dr 4πr2 Φnl(r) ⟨ρlm⟩θ,ϕ(r) =

=
1

Inl

∫ 1

−1

dξ
8παr3

1− ξ2
Φnl(r) ⟨ρlm⟩θ,ϕ(r) , r =

(
1+ξ
1−ξ

)α
(24)

⟨ρlm⟩θ,ϕ(r) ≡ 1√
4π

∫ π

0

dθ sin θ P̃m
l (cos θ)

∫ 2π

0

dϕ trigmϕ ρ(r, θ, ϕ) (25)

If the density is represented by a set of point masses Mi located at positions ri,
i = 1..N , then the coefficients are evaluated as follows:

Anlm =
1

Inl

N∑
i=1

Φnl(ri) ρlm,i (26)

ρlm,i ≡ Mi

√
4π P̃m

l (cos θi) trigmϕi (27)

B.3.2 Spherical-harmonic expansion for the scale-free potential

In this case, the density and potential are represented as

Alm(r) = Alm r−γ , Clm(r) = Clm r2−γ , (28)

The density profile ρ(r) = (x2 + y2/q2 + z2/p2)−γ/2 is used to compute Alm =
rγ ⟨ρlm⟩θ,ϕ(r) using (25). The relation between potential and density coefficients is given
by

Clm =
4π

(l + 3− γ)(2− l − γ)
Alm (29)

B.3.3 Spline spherical-harmonic potential expansion

In the Spline potential the radial dependence of expansion coefficients Alm(r), Clm(r) in
(16) is represented directly as a spline function in (scaled) radius. More specifically, we
define the scaled functions C̃lm as

C00(r) = −[exp(−C̃00(ξ))− 1/C00(0)]
−1, ξ ≡ ln r (30)

Clm(r) = C00(r)C̃lm(ζ), ζ ≡ log(1 + r)

Here C00(0) is the value at origin, and C̃00 ≡ − ln[1/C00(0)− 1/C00(r)]. Tilded func-
tions are approximated by cubic splines. The evaluation of derivatives w.r.t. r is straight-
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forward:

dC00

dr
= −C2

00 exp(−C̃00)

r

dC̃00

dξ
(31)

d2C00

dr2
=

C2
00 exp(−C̃00)

r2

dC̃00

dξ
− d2C̃00

dξ2
+

(
dC̃00

dξ

)2

(2C00 exp(−C̃00) + 1)


dClm

dr
=

C00

1 + r

dC̃lm

dζ
+ C̃lm

dC00

dr
(32)

d2Clm

dr2
=

C00

(1 + r)2

[
d2C̃lm

dζ2
− dC̃lm

dζ

]
+

2

1 + r

dC̃lm

dζ

dC00

dr
+ C̃lm

d2C00

dr2

Density is evaluated via Poisson equation as the second derivative of potential, rather
than represented separately. The spherical-harmonic expansion of density coefficients
is defined by (25): Alm(r) = ⟨ρlm⟩θ,ϕ(r). The relation between density and potential
coefficients is given by

Clm(r) = − 4π

2l + 1

[
r−l−1

∫ r

0

Alm(s) s
l+2 ds+ rl

∫ ∞

r

Alm(s) s
1−l ds

]
(33)

If the density is represented by a set of discrete points, Clm(r) is computed using the
definition (27) as

Clm(r) = − 1

2l + 1

[
r−1−l

∑
ri<r

ρlm,i r
l
i + rl

∑
ri>r

ρlm,i r
−l−1
i

]
(34)

For convenience, values of Clm(r) in the coefficients file (Sec. 4.4.4) are stored with
inverted sign, so that C00(r) is positive.

B.4 Penalized spline approximation

Initialization of Spline potential from a set of point masses requires representing the
radial dependence of spherical-harmonic expansion coefficients, which are computed at
each particle’s radius, by a small number of terms. In other words, we seek to find
best-fit spline approximation to the “true” radial dependence of Clm(r). In addition, the
coefficients calculated from a point mass set are subject to discreteness fluctuations, in
other words, they represent the actual smooth density model, which is sampled by this
set of particles, with some random noise which needs to be smoothed out.

In this section we describe the penalized linear least-square fitting method used for
this purpose. Suppose we have the original data points xi, yi, i = 0..Nd − 1, and we need
to find the smooth function ŷ(x) which minimizes the following functional:

Nd−1∑
i=0

{yi − ŷ(xi)}2 + λ

∫
{ŷ′′(x)}2 dx (35)

Here λ ≥ 0 is the smoothing parameter. Standard mathematical arguments [10] show
that the solution to the above equation is given by a cubic spline with knots at each data
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point xi, but for the present purposes it is impractical (Nd may be as large as 106). Instead,
we require ŷ(x) to be a cubic spline with knots at Xk, k = 0..Nk−1, number of knots being
O(10). Denote Yk the values of spline at its knots; a cubic spline is uniquely specified
by Xk, Yk and two additional parameters, for example the derivatives at endpoints (the
standard case of natural cubic spline is when the second derivatives at endpoints are
zero). Another way to represent ŷ(x) is via b-splines, that is, ŷ(x) =

∑Nb−1
p=0 wpBp(x),

where Bp(x) are basis functions, each of them is non-zero at most on four consecutive
intervals Xk..Xk+1. The number of basis functions is Nb = Nk + 2.

Equation (35) is solved by the following linear system:

(A+ λR)w = z , A ≡ CT C , z ≡ CTy (36)

C ≡ Cip ≡ Bp(xi) , R ≡ Rpq ≡
∫

B′′
p (x)B

′′
q (x) dx , w ≡ wp , y ≡ yi (37)

In other words, given the x-coordinates of original data points xi and of spline knots
Xk, we construct the b-spline basis functions Bp(x), calculate the matrices Cip, Apq and
Rpq, and solve the equation (36) for any given set of data points yi and smoothing factor
λ.Note that the size of linear system is only Nb ≪ Nd. An efficient way of solving the
minimization problem for multiple values of y, λ is described below [11].

1. Obtain Cholesky decomposition of A = L LT , where L is a lower triangular matrix.

2. Obtain singular value decomposition of Q ≡ L−1 RL−T = U diag(S)VT , where U and
V are square orthogonal matrices (so that U−1 = UT ), and the diagonal matrix in
between them holds the vector of singular values S. Since the matrix Q is symmetric
positive definite, U and V are the same matrix (so in effect SVD is just eigenvalue
decomposition). Next, obtain another auxiliary matrix M ≡ L−T U.

3. Now for any vector of data points y and value of smoothing parameter λ, the
solution of (36) for weight coefficients w is given by first computing z = CTy and
then setting

w = M (I+ λ diag(S))−1 MT z (38)

In the case when λ = 0, step 2 is not necessary, as the solution is given by

w = L−TL−1z (39)

The quality of fit is usually assessed by residual sum of squares (RSS), which is the
first term in (35). In case of penalized smoothing, several modified criteria are used, for
example, generalized cross-validation score (GCV), or Akaike information criterion (AIC):

GCV ≡ RSS/Nd

(1− EDF/Nd)2
, AIC ≡ ln(RSS) +

2EDF

Nd − EDF− 1
, where (40)

RSS = |y|2 − 2wTz+ |LTw|2 , and EDF = tr(I+ λ diag(S))−1 =

Nb−1∑
p=0

1

1 + λSp

is the equivalent number of degrees of freedom (varies from Nb for λ = 0 to 2 for λ → ∞,
in which case the smoothing spline is just a two-parameter linear regression).

31



Standard practice is to choose λ which minimizes GCV or AIC. In practice, for Nd ≫
Nb this results in very little smoothing, as RSS invariably grows with increasing λ and
EDF/Nd changes only from a small number Nb/Nd to an even smaller one 2/Nd. So
the conventional criterion may only suppress small-scale noise (variations of y on scales
much smaller than distance between knots). In the present application, we expect most
of the larger-scale fluctuations in radial dependence of SH coefficients to be dominated by
discreteness noise as well (in the simplest density models, all coefs typically have only one
outstanding maximum in the entire range of radii). So we may need to smooth more than
“optimal”, which is achieved by finding a value of λ which yields the value of AIC higher
than AIC(λ = 0) by a pre-defined parameter, ∆AIC. The justification of this approach
is that if the non-smoothed regression describes the true curve reasonably well (i.e. with
small RMS), then increasing AIC by a moderate constant, say 1-2, will increase RMS by
a factor of few while still keeping it small. On the other hand, for the case when the data
is noisy and wildly fluctuating, RMS is quite large even for non-smoothed regression, so
that increasing it by a factor of few will produce a much smoother fit, probably even a
linear fit (in which case the data is believed to be consistent with pure noise and discarded
altogether).

B.5 Statistics of pericenter passages

In some applications, it is important to distinguish between centrophilic and centrophobic
orbits. The first may approach arbitrarily close to the origin of coordinates (examples
include non-resonant box orbits, pyramids and a substantial fraction of chaotic orbits),
the second do not come closer than a certain distance from the center (like usual loop
orbits). As part of orbit analysis, the statistics of pericenter passages is examined to
determine if the orbit is centrophilic or not, or, more generally, what is the distribution of
squared angular momentum values recorded at pericenter passages (defined as moments
when ṙ = 0 and r̈ > 0).

Define L2
peri,k, p = 1..Nperi as the values of squared angular momentum recorded at

pericenter passages, sorted in ascending order. It appears that for most orbits the distri-
bution of these values is linear at small p, so we fit a linear regression

L2
peri,k = L2

min + s× k/Nperi + δk , k = 1..Nfit. (41)

Here Nfit is typically 0.1Nperi (but in addition we require that 10 ≤ Nfit ≤ 50), so
we study only the low-L part of the distribution. The parameters L2

min and s are to be
estimated from the regression, and δk are the residuals. Additionally, we fit the same
distribution to a one-parameter regression

L2
peri,k = s′ × k/Nperi + δ′k, (42)

and compare the statistical significance of the fits, by standard χ2 analysis. Since we do
not have any intrinsic “measurement errors”, we simply assign the intrinsic dispersion
σ2
fit, same for each point, from the condition

σ2
fit =

∑Nfit

k=1 δ
2
k

Nfit − 2
, (43)
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which is a standard practice giving exactly unity for χ2 per number of degrees of freedom
(d.o.f.) Nfit − 2. Next, we do the same for the one-parameter regression and compute

∆χ2 ≡ χ2
one−param − χ2

two−param =
1

σ2
fit

Nfit∑
k=1

δ′2k − (Nfit − 2) (44)

Now the quantity ∆χ2 should have a 2-d.o.f. χ2 distribution, and we require it to
be less than a certain threshold ∆χ2

thr to accept the hypothesis that the one-parameter
fit is good enough. In other words, we put L2

min = 0 if it happens to be < 0 in (41)
or if ∆χ2 < ∆χ2

thr = 11.8 in (44), which is a 3-σ deviation for 2-d.o.f. χ2 distribution.
Otherwise we take the best-fit value from the two-parametric regression and assign the
fitsignificance parameter as the deviation of L2

min from zero, measured in σ’s. The
L2slope value is assigned to either s or s′ (depending on which regression is adopted).
Another parameter measuring the reliability of the fit is

fitscatter ≡ σfit/σtypical , where σtypical ≡
√

Nfit s/Nperi (45)

is the “natural” scale for the magnitude of residuals. A value larger than ∼ 0.5 for
fitscatter usually indicates that the distribution of angular momenta is not well de-
scribed by a linear regression.
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Example of fitting the distribution of L2

at pericenter passages by a linear regres-
sion with (dashed green, eq. 41) and with-
out (dotted blue, eq. 42) constant term. Val-
ues of L2

peri are sorted in ascending order,
only lowest 10% of points are used in the
fit; error bars are assigned from (43), with
the fitscatter parameter (45) being ≃ 0.3.
The fit with zero intercept (L2

min = 0) is just
about 3 standard deviations worse than the
two-parameter fit (∆χ2 = 12.3 in eq. 44).
This orbit is quite likely to be centrophilic
but will not be labelled as such by the 3σ
criterion; a typical centrophobic orbit has a
102 − 104 σ deviation of L2

min from zero.

B.6 Solving the optimization problem

In general, the Schwarzschild modelling is formulated as the problem of finding weights of
orbits wo ≥ 0, o = 1..No such that Nc constraints are satisfied via mc =

∑No

o=1 tocwo, where
toc is the contribution of o-th orbit to c-th constraint. For instance, in the Classic model,
toc is the time spent by each orbit in each cell of the spatial grid. The linear system may
contain the constraints from several CSchwData objects: density model (Classic, BSE or
SHGrid), kinematics, or, in principle, any other kind of constraints (e.g. from observations
of surface brightness or line-of-sight velocity distribution), all combined in one set by the
CSchwModel object.
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In practice, not all constraints may be satisfied exactly, so there are two options to
allow for the deviation from exact solution, given by the parameter constraintPenalty.
The first case, when constraintPenalty>0, adds the penalty for constraint violation
to the objective function which is minimized by the solver. This is done by introducing
additional 2Nc non-negative variables µc, νc and rewriting the linear system as

mc =
No∑
o=1

tocwo + µc − νc , c = 1..Nc (46)

The objective function is

F = α
Nc∑
c=1

(µc + νc) + Fadditional , α ≡ constraintPenalty (47)

In the second case we allow the deviation in the constraint value not to exceed β|mc|.
This is achieved by adding another Nc equations to (46):

µc + νc = β|mc| , β ≡ −constraintPenalty (48)

No additional terms are introduced in the objective function in this second case.
It is parametrized by the fractional tolerance β, given by the same parameter
constraintPenalty if it is negative. The last equation in the linear system requires
that the sum of all orbit weights is equal to the total mass of the model, and it must be
satisfied exactly. All these possibilities are shown in the diagram below, which depicts the
linear system to be solved. White blocks represent the original set of Nc+1 equations for
No variables (one additional for the total mass); if constraintPenalty=0 these are the
only ones to be solved. Yellow block shows the augmented system having 2Nc additional
variables. Cyan block shows the case with the tolerance range (it also has the additional
variables and Nc more equations).
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=
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Mtotal

The objective function may have additional terms Fadditional: the quadratic regulariza-
tion term is given by

Fquadratic =
λ

No

No∑
o=1

(
wo

Mtotal/No

)2

, λ ≡ regularization (49)
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If one wishes to increase or reduce contribution from chaotic orbits (or, in prin-
ciple, any subset of orbits based on their properties, evaluated via an instance of
COrbitFilteringFunction), then an additional term is introduced in the objective func-
tion, given by

Fbias =
κ

Mtotal

No∑
o=1

wo × E({orbit}) , κ ≡ chaoticPenalty, (50)

E =

{
1 if Lyapunov exponent Λ > Λthreshold

Ξ(log10(FDR/FDRthreshold)) otherwise
, Ξ(x) ≡


0, x < −0.5
0.5 + x, −0.5 ≤ x ≤ 0.5
1. x > 0.5

The latter equation explains how the filtering function for chaotic orbits works: if the
Lyapunov exponent is greater than the threshold chaoticMinLambda, then the evaluation
function equals 1, otherwise its value is 0 for “strongly regular”, 1 for “strongly chaotic”
orbits and in between for the intermediate case – based on the value of frequency diffusion
rate compared to the threshold chaoticMinFreqDiff.

The normalization factors in (47, 49, 50) are arranged so as to keep the magnitude
of objective function independent of No and Mtotal; in addition, the values of mc and toc
entering the linear system are normalized by factors m̃c which are specific to the given
variant of Schwarzschild model. This is introduced to reduce the strong variation in
magnitude of coefficients in BSE and, to a lesser extent, Spline models. For instance, in
the Classic model the normalization coefficient of a cell in a given shell is the expected
shell mass for a spherically-symmetric density profile, divided by the number of cells in
the shell.

The linear system and the objective function are passed to the instance of linear or
quadratic optimization solver, which at present may be chosen from one of three variants:
BPMPD (an external program), CVXOPT (a Python-based solver) and GLPK (C library
for linear programming). The interface between the Schwarzschild model object and the
solver is defined in the abstract way, allowing to isolate the details of Schwarzschild mod-
elling from the implementation of the solver (it may not even need to be a linear/quadratic
one).

C Additional programs

C.1 mkspherical

This program uses spherical mass models for two different purposes and created from
two possible sources: either from a supplied table with r,m(r) values specifying enclosed
mass as a function of radius, or an N -body snapshot, in which case it first fits a penalized
spline to compute M(r) from the snapshot. The spherical model, in turn, may be used
to compute a number of parameters as spline-interpolated functions of radius (potential,
radial/circular period, distribution function via Eddington inversion formula, diffusion
coefficients, etc.), or to generate an N -body snapshot, in which particles are distributed
according to the given density profile and isotropically in velocities. In short, this is
a generalization of tools such as halogen or spherICs for creating a spherical isotropic
model with a given arbitrary density profile, and at the same time a useful tool to study
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dynamical properties of a given N -body system (or, rather, its spherically-symmetric
isotropic counterpart).

Parameters [default values]:

• intab=[???] text file with two columns: r,Menclosed(r). Radii and masses must be
in ascending order, nonzero value of M(0) indicates the presence of central point
mass (e.g. supermassive black hole). There is a simple perl script to generate this
input text file for a user-specified analytical mass model.

• insnap=[???] N-body snapshot used as input data for mass model. The model
is constructed by fitting a penalized smoothing spline to the log-scaled values of
r,M(r). More specifically, this is done as follows:

– particles are sorted in radius;

– an “extrapolated total mass” is found such that the dependence of
log[M(r)/(Mtot − M(r))] vs. log(r) is best described by a linear function
for the outermost few percent points. This extrapolated mass has nothing
to do with the subsequent total mass in the spherical model, but this step is
required in order to ensure that the log-scaled mass defined above does not ex-
hibit sharp variations at outer radii, so that spline fitting results in least bias.
For a density profile which declines as a power-law in radius, this extrapolated
mass will coincide with the true extrapolated total mass, even if the profile
is sharply truncated at some finite radius; otherwise this is just an internal
scaling parameter.

– a smoothing spline is fitted to the scaled quantities defined above. This will,
as a side result, fit a power-law to M(r) at small radii. The degree of spline
smoothing is adjusted by smoothing parameter. Then the smoothed mass
model is used as input in the same way as a text file in the intab=??? mode.

Either insnap or intab must be given, not both.

• smoothing=[1] adjusts the spline smoothness; less smoothing means somewhat
better representation of wiggles in density, at the expense of distribution function
wildly oscillating and possibly becoming negative. If the computed quantities seem
to be weird, this is the first parameter to play with.

• outtab=[] name of output text file containing the following columns:
r M(r) Φ ρ f(E) g(E) M(E) Trad rcirc Lcirc σ1d σlos Σ DEE DRR
The dynamical quantities are given as functions of radius, projected radius, or en-
ergy (E = Φ(r)). f(E) is the distribution function, g(E) is the density of states

(according to the notation of [4]), and M(E) ≡
∫ E

−∞ f(E ′)g(E ′)dE ′ is the total mass
of particles having energies lower than E. Trad(E) is the radial period, rcirc is the
radius of circular orbit and Lcirc is the angular momentum of that orbit. σ1d(r)
is the conventional one-dimensional velocity dispersion, σlos(R) is the line-of-sight
velocity dispersion at given projected radius R, and Σ(R) is the surface density at
projected radius R. Finally, DEE(E) and DRR(E) are the diffusion coefficients in
energy and dimensionless squared angular momentum R ≡ L2/L2

circ, as given, for
instance, in Chapter 5 of [5]. These coefficients depend not only on the mass model
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itself, but on the number of particles in the model. To obtain the actual values for
a given single-mass N -body snapshot with particles of mass m⋆, multiply the values
given in the table by m⋆ ln Λ, where the Coulomb logarithm lnΛ is usually taken
to be ∼ lnN . The coefficients represent orbit-averaged values, and the relaxation
time in energy or angular momentum may be estimated as the inverse of (DEE/E

2)
and DRR, correspondingly. The more familiar local relaxation time [4] is given by

Trel =
0.34σ3

1d(r)

m⋆ρ(r) lnΛ
.

• mbh=[0] is the additional point mass (representing a supermassive black hole) at
the center.

• rmin=[], rmax=[] inner and outer radii for the output table; as usual, a log-scaled
grid is created between these radii and the quantities are output at the nodes of this
grid. Default values are chosen to enclose all interesting features in the model.

• npoints=[100] number of output grid points. The output grid doesn’t need to be
related to the input r,M(r) values from the text file, in particular, it is instructive to
see how the model is extrapolated to smaller and larger radii (sometimes, however,
is does weird things). If npoints=-1 then the output grid is the same as input
set of radial points (or the nodes of interpolation spline if the input is an N -body
snapshot).

• outsnap=[], nbody=[] – if given, an N -body representation of the spherical model
is created and written as a snapshot file.

• outformat=[Nemo] – format of the output snapshot file (Text/Nemo/Gadget).

• quiet=[0] – specifies how random are particle positions in the output snapshot: 0
– totally random, 1 – random but each one within its own interval of equally-spaced
r(M), 2 – fixed at equal intervals of r(M).

C.2 renderdensity

Create a visual representation of a BSE/Spline potential given by a coefs file (Sec. 4.4.4),
by populating space with point masses according to local density (with zero velocities).
It generates a sufficient number of points distributed according to the given spherically-
averaged mass profile and isotropic in angles, computes the density at each point and
draws a necessary number of sampling points from this set, proportionally to the density
(which depends also on angles).

Parameters:

• in=[???] – input potential coefs file (Sec. 4.4.4).

• out=[???] – output snapshot file.

• nbody=[???] – number of particles to represent potential.

• outformat=[Nemo] – format of the snapshot file (Text/Nemo/Gadget).
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C.3 snaporbits

Perform orbit analysis for a N -body simulation from the input file contains multiple time
snapshots, output OrbitLibrary file (Sec. 4.2) with orbit properties (i.e. trajectories of
individual particles from the snapshot are analyzed). Useful to compute orbit population
and/or proportion of centrophilic orbits; chaotic properties are not very meaningful. To
analyze what kind of orbits are possible in a smoothed potential of an N -body model, it
is better to use the entire SMILE machinery.

Parameters:

• in=[???] – input file in NEMO format, containing multiple (no less than several
hundred) time snapshots of an N -body system in evolution, equally spaced in time.
The test particles are traced from one snapshot to the other assuming that their
indices are unchanged, so each particle produces an orbit.

• out=[???] – output OrbitLibrary file.

• pot=[] – file with potential coefficients, or a snapshot file containing field particles
in which the test particles are assumed to move. If no file is given then the first
snapshot from the input file is taken to create a potential model. The potential is
only used to compute Torb, so it needs not be a very accurate representation. If
the potential is initialized from a N -body snapshot, its coefficients are stored in the
coefs file with the same name as pot or in and extension coef_bse/coef_spl.

• nrad=[20], nang=[6], sym=[t], pottype=[s] – parameters for potential ap-
proximation if it is created from an N -body snapshot and not read from a coefs file:
number of radial and angular terms, symmetry type ([n]one, [r]eflection, [t]riaxial,
[a]xisymmetric, [s]pherical), and the potential type ([s]pline or [b]se).

• mbh=[0] – additional point mass (black hole) at the origin (for all variants of poten-
tial specification this additional mass needs to be provided separately, since coefs file
does not contain information aboutMbh, and input snapshot for creating a potential
approximation should not contain it either.

C.4 measureshape

Computes axis ratios and orientation of principal axes of an N -body snapshot, as functions
of radius. Use either equidensity ellipsoid axis ratios (if density is decreasing function of
radius), or moment of inertia tensor. (Doesn’t use SMILE).
The snapshot file may contain multiple time moments; presently only NEMO snapshots
are processed.

Parameters:

• in=[???] – input snapshot file;

• nbins=[20] – number of bins in radius for which to compute the axes;

• cutoff=[0.999] – fraction of total mass contained in the outermost bin;
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• minbin=[0] – fraction of mass in the innermost bin; 0 by default means 1/nbins,
i.e. all bins contain equal mass, otherwise bin masses are spaced quasi-exponentially
in enclosed mass;

• cumul=[t] – each bin contains all mass interior to given radius [t] or only the mass
in the (ellipsoidal) shell between the given and the previous radius [f]; the latter
option should be used with care as it may not always converge (e.g. if the ellipsoid
axes are varying rapidly with radius);

• dens=[f] – method of computing the axis ratio:

– Equidensity ellipsoid [t], provided that density is a decreasing function of radius
and that density information is present in the snapshot (used in [12]).

– Inertia tensor [f] of particles with iteratively determined axes (see [13] for an
extended discussion on variations of this method). The axes are determined
from the inertia tensor of particles within ellipsoidal volume, with the ellipsoid
itself using the axes determined on the previous iteration, until it converges.

• compact=[f] – print all data for given time in one line [t] or in nbins lines [f];

• angles=[f] – print the angles between x and z axes and the major and minor axes
of the ellipsoid).

C.5 energydiff

Computes the rate of energy and angular momentum diffusion in an N -body simulation
of a near-equilibrium system. Useful to check that the system under study is indeed in
equilibrium, and that all changes in particles’ energies are due to two-body relaxation.
All particles are assigned to nbins bins, according to their initial energy. The program
tracks the squared change of total energy and angular momentum for each particle in a
simulation containing multiple time snapshots, and averages them over particles belonging
to the same energy bin. For a diffusion process, the square change in the integral of motion
should grow linearly with time, with the slope being the diffusion coefficient. Accordingly,
the best-fit slopes for energy and angular momentum are reported as functions of energy.

Parameters:

• in=[???] – input NEMO snapshot file.

• nbins=[100] – number of bins in energy.

• minbin=[0] – fraction of mass in the innermost bin (0 by default means 1/nbins).

• rel=[f] – if false, report the diffusion coefficients for ⟨∆E2/t⟩ and ⟨∆L2/t⟩, if true,
report the diffusion coefficients for relative (dimensionless) quantities ⟨(∆E/E)2/t⟩
and ⟨∆R2/t⟩, where R ≡ L2/L2

circ is the squared angular momentum normalized to
that of a circular orbit with the same energy. To compute the latter quantity, the
program uses a spherical mass model (Sec. B.2) approximating the N -body system.
It could be constructed from either the first snapshot of the simulation (default), or
specified by the r,M(r) file (same as input file for mkspherical program, Sec. C.1).
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• tab=[] may provide this mass model file for computing L2
circ(E). If not given, the

first snapshot is used. There is no need in smoothing the input snapshot as done in
mkspherical.

• mbh=[0] – additional point mass at the center (in general, if a simulation contains
a black hole, it should be filtered out, e.g. by the NEMO tool snapmask, before
computing the diffusion rate, otherwise the data for inner bins will be distorted.
This parameter is only relevant for computing Lcirc in the case rel=t).

• outdelta=[$in.delta] – output file containing ⟨∆E2⟩, ⟨∆L2⟩ (or their dimen-
sionless counterparts in the case rel=t) for each bin and each time. It contains
2*nbins+1 columns, the first is the snapshot time, and then two numbers for each
energy bin. Each row corresponds to one time snapshot. The first line lists the
average and maximal value of energy for each bin. This file may be used to check
that the squared changes in E and L indeed grow linearly with time.

• outcoef=[$in.difcoef] – output file containing summary information, i.e. fitted
diffusion coefficients for each energy bin and their uncertainties. Each line has 5
values: average (initial) energy of particles in each bin, ⟨∆E2/t⟩ and its relative un-
certainty, and the same for L (or analogous diffusion coefficients for dimensionless
values). These coefficients may be compared to the predictions of two-body relax-
ation theory, by using a tab file from mkspherical (Sec. C.1) for the same mass
model. The figure below shows a comparison for a N = 105 particle spherical γ = 0
Dehnen model, plotted in gnuplot.
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