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Overview of dynamical modelling

Two “flavours” of dynamical modelling – theoretical and observational



  

Dynamical models: theoretical input

Jeans theorem :  In a steady state, the distribution function may only depend 
on integrals of motion (in the given potential).

Thus we may have, for instance, in a spherical system, the energy E and 
angular momentum L as integrals of motion, and the d.f. is  f(E, L).

For simple cases, it is possible to find  f if we specify ρ and Φ.
(e.g. Eddington inversion formula for  f(E) or its generalizations for  f(E,L).

In general case, we may not know the integrals of motion explicitly, 
they may not exist for every orbit, and there is no general way of finding f.

A popular approach is to represent a system as an N-body model
(sample the distribution function by discrete particles).
It is guaranteed to be self-consistent (potential satisfies the Poisson eqn),
and the model may be reasonably close to a steady state (not evolving).



  

Dynamical modelling:  observations
Photometric data                 surface brightness map              luminosity profile (+flattening)

integral-field spectroscopy   =>            kinematic map (mean velocity, dispersion and higher moments,
or full line-of-sight velocity distribution from fitting absorption line profiles) 



  

A self-consistent dynamical model
using Schwarzschild's method

 take an arbitrary density profile ρ(r)
and potential Φ(r)  
(not necessarily self-consistent);

 discretize the space into a 3d grid;
compute the mass in each grid cell; 

 numerically compute a large number of 
orbits in the given potential, and record 
their spatial shape on the grid;

 assign orbit weights in such a way as 
to reproduce the required (discretized)
density profile, and possibly additional 
(e.g. kinematic) constraints.



  

Orbit superposition

Orbits in the 
model

Target 
density
 profile

For each c-th cell we require  Σ wi tic = mc, where wi is orbit weight

Discretized orbit density

(fraction of time tic that  i-th orbit spends in c-th cell)                 

Discretized model density

(mass in grid cells – mc) 



  

Linear optimization problem

Solve the matrix equation for orbit weights  wο under the condition that wο≥0

Typically  Norb » Ncell,  so the solution to the above system, if exists, is highly 

non-unique.  The number of orbits with non-zero weights may be as small as Ncell, 

and moreover, orbit weights may fluctuate wildly (which is considered unphysical).

To make the model smoother, some regularization is typically applied

(in which case the problem becomes non-linear, for instance, quadratic in wo).



  

Modelling of observational data – 
photometry

Photometry => approximation by a suitable smooth surface brightness profile =>
deprojection (what to assume for the inclination angle?) =>

3d density profile (assuming constant M/L? not necessarily..)     

Usually approximate the density profile 
with a Multi-Gaussian Expansion

Alternatives: basis-set expansion, 
Fourier decomposition for spiral galaxies, etc..



  

Modelling of observational data – 
kinematics

Long-slit spectroscopy         Integral-field spectroscopy           Individual star velocities



  

Kinematics: LOSVD, Gauss-Hermite moments,...



  

Schwarzschild modelling for observations

 Take some guess for the total gravitational potential Φ(r);

 Compute a large number of orbits (103–105), record density and 
kinematic information, including PSF and other instrumental effects;

 Solve for orbit weights wo while minimizing the deviation χ2 
between predicted and observed kinematic constraints Q 
and adding some regularization λ:

Solution obtained by linear or quadratic programming, or non-negative least squares (NNLS)



  

Search through parameter space

 Take some guess for the total gravitational potential and other 
model parameters;

 Construct an orbit superposition model that fits the observed 
kinematics and photometry; evaluate the goodness-of-fit  χ2;

 Repeat with different parameters (M/L, MBH, inclination, …)
find best-fitting model and confidence intervals.

 Marginalize over 
unknown params
(e.g. inclination)

 If possible, 
determine total
potential (including
dark matter halo) 
nonparametrically



  

A fundamental indeterminacy problem

 The distribution function of stars generally is a function of three 
variables (integrals of motion);   the gravitational potential, in a 
general case, is another unknown function of 3 coordinates.

 Observations typically may provide at most 3-dimensional data 
cube (1d LOSVD at each point in a 2d image)  [exception: GAIA, etc]

 We cannot infer 2 unknown functions in a unique way from 
observations!

 Therefore, parameters 
are intrinsically degenerate

 If the confidence range for 
determined parameters 
is too narrow, it most likely
means that the model was 
not general/flexible enough. Flat-bottomed χ2 plots are almost

never seen in published papers!



  

Implementations of Schwarzschild method
Observation-oriented:

    Axisymmetric:

 The “Nukers” group (Gebhardt, Richstone, Kormendy, et al...)

 The “Leiden” code (van der Marel, Cretton, Rix, Cappellari, …)

 The “Rutgers” code (Valluri, Merritt, Emsellem)

    Triaxial:

 van den Bosch, van de Ven & de Zeeuw

 Zhao, Wang, Mao (for Milky Way)

Theory-oriented:

 Schwarzschild(1979+)

 Pfenniger(1984)

 Merritt&Fridman(1996)

 Siopis&Kandrup(2000)

 Vasiliev(2013)



  

A bit of advertisement
SMILE orbit analysis and Schwarzschild modelling software

 Explore properties of orbits in arbitrary non-spherical potential;

 Various chaos detection tools and phase space visualization

 Create Schwarzschild
models for triaxial galaxies 
(elliptical and disky)

 Educational and practical
applications

 GUI interface

 Publically available at
http://td.lpi.ru/~eugvas/smile/

 So far a “Theorist's tool”, 
but extension to 
observational modelling 
is planned

http://td.lpi.ru/~eugvas/smile/


  

Other dynamical modelling methods
Based on Jeans equations:

 Jeans Anisotropic Models (Cappellari+) 
+ easy to understand and apply, fast, efficient exploration of parameter space
– only first two velocity moments;  limited flexibility (axisymmetry; fixed orientation 
of velocity ellipsoid); existence of positive distribution function not guaranteed

 MAMPOSSt (Mamon+) – spherical, DF-based, flexible anisotropy, fast

Based on N-particle models:

 Made-to-measure (M2M) (Syer&Tremaine;  Gerhard, de Lorenzi, Morganti;  Dehnen;   Long, Mao;  Hunt, Kawata):
particle evolution in a self-adapting potential; changing particle masses to adapt 
to observations; similar to Schwarzschild method but without an orbit library

 Iterative method (Rodionov, Athanassoula): 
adaptation of velocity field to dynamical self-consistency and observations

 GALIC (Yurin, Springel):  like Schw. without orbit library, iteratively adjust velocities 

Other approaches:

 Torus modelling (Binney, McMillan) 

 Near-equilibrium flattened models (Kuijken, Dubinski;  Dehnen, Binney;  Contopoulos; ...)



  

Conclusions
 Dynamical modelling requires the knowledge of both density distribution and 

kinematics;  usually the assumption of stationary state is also necessary

 The problem of finding the unknown potential from the tracer population of 
visible matter with unknown distribution is indeterminate;  some assumptions 
are usually made to make any progress

 Various dynamical modelling methods offer a spectrum of opportunities: 
usually the more sophisticated and flexible ones that have least number of 
assumptions are also most expensive,  while the simpler ones may suffer from 
model restrictions

 Confidence intervals on model parameters are often determined by hard to 
control systematic restrictions rather than the data itself;
more flexible methods may generally give a wider range of allowed parameters,
which reflects true physical indeterminacy

Happy modelling!


