Modern stellar dynamics, lecture 1: introduction, observational foundations

Eugene Vasiliev

Institute of Astronomy, Cambridge

Part III / MAst course, Winter 2022

Plan of the course

- Introduction, observational foundations
- Structural properties of stellar systems, density and gravitational potential
- Orbits of stars; integrals of motion, action-angle variables
- Collisionless systems, Boltzmann equation and its moments Jeans and virial equations
- Equilibrium models of stellar systems
- Mass modelling inference on gravitational potential from stellar kinematics
- Collisional systems: two-body relaxation, evolution of star clusters
- Galaxy encounters, tidal streams and shells; galactic archeology

Literature:

- Binney J. & Tremaine S., Galactic dynamics (2nd ed.), Princeton Univ. press, 2008
- Bovy J., Dynamics and astrophysics of galaxies: galaxiesbook.org

Scope

tidal streams

Characteristic scales

	globular clusters	galaxies					
	$N\sim 10^4-10^7$	$N\sim 10^7-10^{11}$					
Size	$\sim 10{ m pc}$	stars: $\sim 1-10$ kpc halo: $\sim 10-100$ kpc					
Velocity	$\sim 10{ m km/s}$	$\sim 10-200~{ m km/s}$					
Time	$\sim 10^{6}$ yr	$\sim 10^8 \; { m yr}$	$\frac{1\mathrm{pc}}{1\mathrm{Mvr}} \approx 0.98\mathrm{km/s}$				
dynamically old							

What is a star?

What is a star?

in stellar dynamics:

a point mass with additional properties:

position, velocity, mass, radius, luminosity, temperature, chemical composition, age, ...

Photometry

Stellar evolution and colour-magnitude diagrams

theoretical isochrones from MIST project [Dotter+2016, Choi+2016]

Observational colour-magnitude diagrams

Solar neighbourhood

Gaia G absolute

10 richest globular clusters

$$E(B-V)\equiv (B-V)_{
m obs}-(B-V)_{
m true}$$

note the prominent dark lanes near the Galactic plane

[credit: ESA]

2MASS infrared survey (early 2000s)

[credit: NASA]

Photometric surveys

Photometric surveys

Name	date w	avelength	coverage	telescope
2MASS	1997–2001	near-IR	all sky	Whipple obs (US), CTIO (Chile) 1.3m
WISE	2010	mid-IR	all sky	space 0.4m
SDSS	2000–2009	optical	1/3 sky	Apache Point 2.5m
PanSTARRs	2011-now	optical	3/4 sky	Hawaii 1.8m
Legacy surveys (DES, DECaLS, DECaPS, MzLS)	2013-now	optical	$1/3 \; { m sky}$	Kitt Peak (US) 4m Blanco (Chile) 4m
VVV VHS	ongoing	near-IR	Galactic plane 1/2 sky (S)	VISTA (Chile) 4m
Gaia	2014-now	optical	all sky	space (L2) 1.2m
LSST	2023–	optical	1/2 sky (S)	Rubin obs. (Chile) 8m

Photometric catalogues

Typically one uses catalogues of individual objects (stars, galaxies) rather than raw images; these can be queried from online databases using specific criteria and cross-matched with other catalogues

Photometry of unresolved stellar populations

usually the image is converted into a parametric surface brightness profile

Astrometry

Astrometry

To measure the absolute proper motion (PM) of a star, one needs

- repeated observations of its location with a baseline of a few years;
- an absolute reference frame (e.g., tied to extragalactic objects) (it is not necessary if one is interested only in the PM dispersion).

Gaia satellite is the main source of astrometric data today, complemented by HST (faint stars, dense systems, small field of view) and ground-based near-IR facilities (highly extincted regions in the Galactic centre).

How Gaia astrometry works

Berry Holl (2008)

90 -80 -60 -50 -30 -20 -10 -

Overview of Gaia mission

- Launched end 2013, duration up to 10 yr
- Scanning the entire sky every few weeks
- Astrometry for sources down to 21 mag
- Broad-band photometry/low-res spectra
- Line-of-sight velocity down to \sim 15 mag (end-of-mission) [Early] data release 3 (December 2020):
- based on 34 months of observations
- ▶ 1.5×10^9 stars with full astrometry
- ▶ 1.5×10^9 stars with two colours
- ▶ 7.2×10^6 stars with $V_{\rm los}$

Full DR3 comes in Q2 2022: increase $V_{\rm los}$ sample to 30×10^6 , provide low-res BP/RP spectra, non-single-star orbital solutions

EII

Gaia astrometric precision

Spectroscopy of individual stars

Two main tasks:

- measure line-of-sight velocities (often meaninglessly called "radial velocities") from Doppler shifts in spectral lines – e.g., Calcium triplet
- measure chemical abundances usually requires relatively high resolution and/or large large wavelength coverage

Data products:

 $v_{\rm los}$ (typical precision: from a fraction of km/s to tens of km/s); metallicity [Fe/H]; abundances of α -elements (C, O, Mg, Si, Ca); stellar parameters: effective temperature ($T_{\rm eff}$); surface gravity (log g); using stellar evolution models: ages and distances.

Multi-fiber and integral-field spectroscopic instruments

SDSS (1000 fibers per plate) [video]

MaNGA IFU

Integral-field spectroscopic instruments

Instrument	wavelength range	spectral res.	spatial res.	field of view	telescope			
MUSE	4650 - 9300	pprox 3000	0."2	$60^{\prime\prime} imes 60^{\prime\prime}$	VLT 8 m			
VIMOS	3600 - 10000	200 - 2500	0."67	$54^{\prime\prime} imes54^{\prime\prime}$	VLT 8 m			
SAURON	4500 - 7000	pprox 1500	0."94	$41^{\prime\prime} imes 33^{\prime\prime}$	WHT 4.2 m			
	3700 – 9600	5000, 20000	1."3	$11^{\prime\prime} imes 12^{\prime\prime}$	WHT 4.2 m			
WEAVE			2."6	$78^{\prime\prime} imes90^{\prime\prime}$				
SAMI	3700 – 9500	1700 - 13000	1."6	Ø15″	AAT 3.9 m			
DensePak	3700 - 11 000	5000 - 20 000	3."0	$30^{\prime\prime} imes 45^{\prime\prime}$	WIYN 3.8 m			
SparsePak	5000 - 9000	5000 - 20 000	4."7	$72^{\prime\prime} imes 71.^{\prime\prime}3$	WIYN 3.8 m			
SITELLE	3500 - 9000	1 - 10000	0."32	11' imes 11'	CFHT 3.6 m			
PPak	4000 - 9000	pprox 8000	2.17	$74^{\prime\prime} imes 64^{\prime\prime}$	Calar Alto 3.5 m			
VIRUS-P	3500 - 6800	pprox 850	4."3	1.7 imes1.7	McDonald 2.7 m			
VIRUS-W	4340 - 6040	2500, 6800	3."2	$105^{\prime\prime} imes75^{\prime\prime}$	McDonald 2.7 m			
MaNGA	3600 - 10 400	pprox 2000	2."0	12."5 – 32."5	APO 2.5 m			
				adap	ted from Zou+ 2019]			
AO-assisted IFU								
MUSE-AO	4650 - 9300	pprox 3000	0."025	$7.''5 \times 7.''5$	VLT 8 m			
SINFONI	11 000 - 24 500	1500 - 4000	0.''1	$3^{\prime\prime} \times 3^{\prime\prime}$	VLT 8 m			
NIFS	9400 - 24 000	5000	0."1	$3'' \times 3''$	Gemini N 8 m			
NIRSpec	10 000 - 50 000	2700	0."1	$3^{\prime\prime} imes 3^{\prime\prime}$	JWST 6.5 m			

Analysis of IFU spectroscopic datacubes: stellar populations

spectra of simple stellar populations (fixed age and chemical composition) \circledast in

 $_{\circledast}$ adjustable contribution of each SSP \Rightarrow spectrum in in the age & metallicity plane \Rightarrow each spaxel

Analysis of IFU spectroscopic datacubes: velocity distribution

spectra of a few template stars

shift and broadening by adjustable velocity distribution function

 $\Rightarrow \frac{\text{spectrum in}}{\text{each spaxel}}$

Summary

- Scope of this course: structure and dynamics of stellar systems with N ≫ 1 stars and dynamical time ≪ the age of the Universe
- Two rather different types of input data: resolved and unresolved stellar populations
- For individual stars, we can measure many properties, including all 6 phase-space coordinates (position + velocity)
- For unresolved stellar systems, have to deal with 2d surface brightness profiles and line-of-sight velocity distributions (2+1d)