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Gravitational potential

V2¢ = 47 G P (in Newtonian gravity)

pc (km/S)Q_

~ 0.004
G ~ 0.0043 A

In galactic dynamics:
» neglect relativity;
» neglect cosmological expansion;

» [usually] ® is negative and tends to zero at infinity.

Formal solution of the Poisson equation (not a practically useful expression):

S =



Gravitational potential of spherical systems

@
Newton's 1st theorem: Newton's 2nd theorem:
a body inside a spherical shell with the force outside a spherical shell of
uniform density experiences no net total mass M is the same as from
gravitational force. a point mass.

Both results directly follow from Gauss's divergence theorem.



Gravitational potential of spherical systems
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Examples of spherical potentials

1. Power law: p(r) =po (r/a) = M(r) = %‘f(r/afﬂ,

(r) = G (/) ity £2,
4r Gpoa® In(r/a) ify=2.

2. Plummer model:  &(r) = —%.
3. Dehnen model:  &(r) = —% [1 — (?ra)%v] (v < 2).
4. NFW model: O(r)=—-Min[1+1].

)
5. Cored logarithmic: ®(r) = v3 In(1+ r/a).



Circular-velocity curves

circular velocity
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for a spherical potential,

) =/ 82 = J

GM(<r)

p .

Cored density profiles have vgc o< r at small r;
logarithmic potential has a “flat rotation curve”

Veire — Vo at large r.

1
radius

radius

term strictly applicable only to gas mo-
tion, which is indeed nearly circular;
mean stellar rotation velocity may be
significantly smaller than vg, so to
avoid confusion, it's better to call this
“circular-velocity curve”



Ellipsoidal potentials

Substitute the ellipsoidal radius m = /x2 + (y/p)? + (z/q)?
into expressions for spherical potential models (e.g., Dehnen v = 1 in this example).

The result is disappointing — density becomes negative at large r.
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Potential of ellipsoidal density profiles

Substitute the ellipsoidal radius m = /x2 + (y/p)? + (z/q)?
into expressions for spherical density profiles and compute the potential.

Introduce a coordinate system based on confocal ellipses and hyperbolae:

X

not concentric (similar)

2 22

ellipses: + - =
cosh®u  sinh®u

R2 Z2
hyperbolae: —— — —— =D
sin® v cos” v
' k=D C_OSh usinv, how to draw confocal ellipses
2d eIIiptic coordinates z = D sinhu cosv, [Graves 1850, bishop of Limerick]

L u>0,0<v<Tm
limiting cases:

D — 0 —spherical: u~>r, v~s0

D — oo — cylindrical: v~ z, v~ R



Ellipsoidal coordinates

[spheroid is an ellipsoid
with two equal axes]
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2d elliptic coordinates Y

oblate spheroidal [from Wikipedia]



Potential of ellipsoidal density profiles

It turns out that the potential created by a thin uniform-density homoeoid
(region between two similar ellipsoidal shells) is constant
inside the shell, and stratified on confocal ellipsoids o

outside the shell (i.e. gets rounder with radius). v -
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By breaking down a density profile stratified on concentric ~~-__ -

(similar) ellipsoids into thin shells, one can express the total potentlal as
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Stackel potentials

A general triaxial ellipsoidal coordinate system A, i, v is defined by two focal
distances; coordinate lines of constant A are confocal ellipses, constant u —
one-sheet hyperboloids, and constant v — two-sheet hyperboloids.
A potential in a triaxial ellipsoidal coordinate system has a Stackel form if

A (A f, f,
O(A\, p,v) = 0 ) )
A=) =2) (p—v)A=—p) @—=X)(p-v)
These potentials are important as the most general case in which the equations
of motion are separable, as we will discuss in the next lecture.

A particularly “simple” example is the Perfect Ellipsoid model [de Zeeuw 1985]:

M a 1
)= 2 4 2 2 272’
TPA [+ X2+ (v/p)? + (2/9)]
(@ is expressed in terms of elliptic integrals).
Note that an oblate Perfect Ellipsoid density
corresponds to a prolate spheroidal
coordinate system for the potential!
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Multipole expansion

Laplacian in spherical coordinates r, 8, ¢:

2
V2¢:l£ (r2a—¢)+ L 0 (sm@a—q))%—;acb

r2 or or r2 sin6 90 o0 r2 sin20 9¢?
Consider first the angular part of the Laplacian — its eigenfunctions are [real-
valued] spherical harmonics satisfying V2Y,"(0, ) = —€(€r+ D Y,"(0, ¢):

Y (0,0) = 2f;1 §§+m le‘(cos 0) trig mo, .

1 if m=20,
trigmo =< V2cosmp if m>0,
\@sin|m\¢ if m<O. *\\‘**’
Pr(x) = SR * * + * *
are associated Legendre functlons
and £ >0, |m| < ¢ are integers. *** ' ***

m=-3 -2 -1
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Multipole expansion

The functions Y,"(0, ¢) form a complete orthonormal basis on the sphere:
1 2

[ dcost [ a0 vre.0) v 0.0) =l 5.
-1 0

Thus any smooth function f(6, ¢) can be represented by an infinite series

00 l
F=Y"> fim Y/ (0.9),

=0 m=—¢
or approximated with any desired accuracy by a finite series (up to £max)-
The coefficients of expansion are given by

1 27
fgmz/_ldcose/o d6 £(6,0) Y (0. ).

Analogously to the Fourier series, the set of terms at a fixed ¢ describes

the variation of the function on angular scales ~ 7 /¢,
¢

and is rotationally invariant: Z f2.is independent of the basis orientation.

m=—/



Multipole expansion of the potential

Now we can solve the Laplace equation V2® = 0 by separation of variables:
assume ®(r,0,¢) = F(r) Y,"(0, ), then

1d [ ,dF ((h+1
V2¢—O——2E(r dr)n #FYE.

A power-law solution for the radial part is

F=(r) = r* (at small radii) or F*(r) = r=*=1 (at large radii).

By joining the two solutions at a radius s using Gauss's theorem,

0%y s =41 G X, we get the potential ®y,, of a thin shell

or ‘r:s_ or lr=s
with surface density ¥(6, ¢) = X Y,"(0, ¢):

— us S r 1 m TGS m(r —£-1 m
O = — ot (5) Y7(0,0), @, = =TT () Y0, 9).

2041 s 2041 s

For a general density profile represented by spherical-harmonic coefficients pgp(r),

¢ = —an Gz 2£+1 [ +



Properties of multipole expansion @

» The potential of a shell fades more quickly as one moves away [\,
in radius for higher-degree harmonics = at large radii, the NN .,-",;/’
potential of any finite-mass model is close to a monopole. W\

» (¢ =1 terms describe the left/right (up/down, etc.) asymmetry N\
and may be cancelled at any given radius by shifting the origin; — -0
however, it may not be possible to cancel them everywhere if s
the density profile is intrinsically lopsided.

» Triaxial systems aligned with the principal axes contain only
terms with even £ and nonnegative even m; axisymmetric
systems — only m = 0.

» (=2 m =0 term describes the flattening in the z direction
(in oblate systems, po < 0 and ®y > 0).

» (=2, m=2 term measures the y/x axis ratio
(p22 > 0 if x is the longer axis).

» Mirror-symmetric features such as spirals need both
m = 2 (cosine) and m = —2 (sine) terms.




Poisson equation in cylindrical coordinates

Laplacian in cylindrical coordinates R, ¢, z:
10 (Racb) 1 0% %0

2 _ -7 e - _
Vo= cor\Ror) TRa T o

Again use separation of variables: assume ®(R, z, ¢) = F(R) G(¢) H(z)

and seek a solution to V2® = 0 everywhere in half-space bounded by z = 0

(same strategy as in the spherical case, replacing shells by planes).

#i (RE) _,_;dz_G — LCP_H — k2

RF(R)OR dR R? G(¢) d¢? H(z) dz2 '

The solution for H(z) is simple: H(z) = exp(£kz); we want it to decay

both at z — +0c0 and z — —oo and have a break at z = 0, so

H(z) = exp ( — k|z|).

Multiplying the remaining expression by @2, we again separate R and ¢:
R 0 dF 2 m2 1 d°G 9

R (For) R = g~

Thus the solutions for G(¢) are cos m¢, sin me.



Poisson equation in cylindrical coordinates

1.0

0.8

We are left with a more complex equation for F(R): s

\
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The solutions are Bessel functions J,,(kR), Yn(kR) -2} \ \,/{,)/,,\)f‘d{;{,\\)&/,,\\/f
(the latter are singular at origin and hence not used). 04l I“\' . . |
0 5 10 15 20
Jm(x) resemble sine functions multiplied by 1/4/x, x

and many of their properties are analogous to those of trigonometric functions.

In particular, they satisfy the following orthogonality relation:
> ok — K
/ dR R Jn(kR) Jm(K'R) = %
0
The Hankel transform (a.k.a. Fourier—Bessel transform) is a direct analogue of

the Fourier transform in cylindrical coordinates:

Fon(k) = /0de R Jn(kR) F(R) <= F(R)= /Ooodk k J(kR) F(k).



Poisson equation in cylindrical coordinates

A single solution of the Laplace equation outside the z = 0 plane is
Pum(R. 6, 2) = Jm(kR) trigmo exp (—k|z|),  trigme = { cosmg if m =0,

sin m¢ if m <O.
Using Gauss's theorem, we find that this potential is generated
by the following surface density in the z = 0 plane:

Sim(R, ¢) = —52= Jm(kR) trig mo.

So the solution for an arbitrary surface density ¥ (R, ¢) is obtained by these steps:
1. Perform Fourier transform in ¢ to get ¥,,(R) = % 027r do trigmo (R, ¢),
2. Perform Hankel transform in R to get f,\n(k) = [ dR R Jn(kR) Zm(R).
3. Corresponding term in the potential: ®,,(k,z) = 26 T (k) exp (—kl|z]).
4

. The entire potential is given by the inverse Hankel and Fourier transforms:

—~

O(R,2) = [ dk k m(kR) ®p(k, 2),
(R, 0,z) = (R, z) trigmg.



Example: potential of an axisymmetric exponential disc

In simple cases, some of the above steps may be performed analytically.
Consider an infinitely thin disc with £(R) = 27’:”’32 exp (—R/a).

Its azimuthal Fourier transform obviosly consists of a single m = 0 term,
and the subsequent Hankel transform gives [GR 6.623]

To(k) = 524 / dR R Jo(kR) exp(—R/a) = 5ty

Now the potential is
®o(R, z) = —27TG/ dk Jo(kR) exp (—k|z|) To(k).
0

Unfortunately, even Gradshteyn & Ryzhik cannot help with
computing this integral analytically, except for z = 0:

Po(R.0) = =35 [lo (55) Ku (55) — Ko (55) h (55)]-
Consider now a finite-thickness disc with a separable profile p(R,z) = X(R) h(2).

By breaking it up into thin planes at each 2/, we get (R, z)= [*_dz’ ®o(R,2') h(z—2')
and fortunately, the integral [ dz’' h(z — Z) exp(—k|z — z |) can be computed ana-

lytically for exponential or isothermal h(z), still leaving a 1d numerical integral in k.
This is not too exciting, and an alternative multipole-based technique is more convenient.




Multipole potential for separable axisymmetric density profiles
Let p(R,z) = £(R) h(z) and H(z) defined as H"(z) = h(z).

Represent the potential as ®(R,z) = 47 G X(r) H(z) + ®es(R, 2),

where @, is generated by the “residual density”

pres = p(R, 2) = [X(R) — Z(r)] h(z) = 2 X(r) [H(z) + z H'(2)].

This density is not strongly input density multipole approximation difference

concentrated towards the
disc plane and can be ef-
ficiently represented by a
spherical-harmonic expan-
sion, unlike the original den-
sity [Kuijken&Dubinski 1994].

- | _—

original p

Example for a radially ex-
ponential, vertically isother-
mal disc with £, = 16.

residual p,




Circular-velocity curves in flattened potentials

potential
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the potential grows slower along the major axis,
and vgc eventually reaches higher values than
in a spherical system with the same mass profile.

The deviation between vgc and /G M(< r)/r
is largest when the density is very flattened, and
gradually decreases for thicker discs (the illustration
shows an infinitely thin exponential disc with a = 1).



Potential of the Milky Way
» Circular velocity peaks around the Solar radius (8.2 kpc) at ~ 235+ 5 km/s
» Stars and dark halo have roughly equal contribution at this radius

» Mass profile at large radii (2 20 kpc) is still rather uncertain
» Total (“virial”) mass within 250-300 kpc is likely ~ (0.8 — 1.5) x 10'2 M,
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Summary

>

Useful math concepts: confocal ellipsoids, Fourier, Hankel and
spherical-harmonic transforms.

Equipotential surfaces are rounder than equidensity surfaces.
Potential of spherical systems is easy to compute (1d integration).

Non-spherical systems generally require 3d integration
(with some exceptions, e.g., in ellipsoidally-stratified density profiles);

Multipole expansion is often the most efficient way of [approximately]
computing the potential, but in the original form it is inaccurate for
disky systems.

In practice, the solution of the Poisson equation is a solved problem:
there exist efficient codes for computing the potential numerically for
an arbitrary density profile.



