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Hamiltonian mechanics

Fundamental concepts of Hamiltonian mechanics:

Hamiltonian H(q,p),
where q are generalized coordinates, p are generalized momenta.

Equations of motion:

q̇ = ∂H/∂p,

ṗ = −∂H/∂q.

In the simplest case, q would be Cartesian coordinates x ≡ {x , y , z},
and p – corresponding velocity components v ≡ {vx , vy , vz}.

H(x, v) = Φ(x) + 1
2
|v|2.



1d harmonic potential

Simplest possible Hamiltonian system with bound motion:

harmonic oscillator: H(x , p) = 1
2
Ω2 x2 + 1

2
p2.

Not a totally idealized case:

Φ(x) ∝ x2 =⇒ ρ(x) ∝ d2Φ

dx2
∝ const.

Constant-density cores are commonly encountered in many stellar systems.



2d harmonic potential
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Same in more than one dimension:

H(x,p) = 1
2

[
Ω2

x x
2 + p2

x

]
+ 1

2

[
Ω2

y y
2 + p2

y

]
+ . . .

Separable Hamiltonian – each dimension
can be integrated independently;
the orbit is a Lissajous figure filling
a rectangle (if frequencies are incommensurable).



2d planar motion in a spherical potential
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2d Hamiltonian in polar coordinates R , φ
for a spherically-symmetric potential:

H(x,p) = Φ(R) + 1
2

[
p2
R + p2

φ/R
2
]
.

Since H is independent of φ, the Hamilton
equation reads
ṗR = −∂H/∂φ = 0,
and the corresponding momentum pφ

(angular momentum L ≡ R vφ = R2 φ̇)
is an integral of motion.

The remaining 1d motion occurs
in the effective potential

Φeff(R) ≡ Φ(R) +
L2

2R2
.



2d planar motion in a spherical potential
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The radial momentum (≡ velocity) is pR(R) = ±
√

2
[
E − Φ(R)

]
− L2/R2;

bound motion occurs between Rperi and Rapo – the two roots of pR(R) = 0
(peri- and apocentre radii). The period of radial oscillations is

TR ≡ 2

∫ Rapo

Rperi

dR

pR(R)
.

During this time, the azimuthal angle increases by

∆φ =

∫ TR

0

dt φ̇ = 2

∫ Rapo

Rperi

dR

pR(R)

L

R2
.

The azimuthal period is defined as Tφ ≡
2π

∆φ
TR .

In general, the two periods are not commensurable,

hence the orbit densely fills an annulus.

For realistic potentials, 1/2 ≤ TR/Tφ ≤ 1,

with the two limiting cases attained respectively

in the harmonic and Kepler potentials.

Rperi Rapo



Orbits in 2d Stäckel potentials
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Consider the 2d elliptical coordinate system u, v
[note the different orientation w.r.t the previous lecture!]

x = D sinh u sin v
y = D cosh u cos v

, 0 ≤ u, 0 ≤ v ≤ 2π

The generalized momenta corresponding to u, v are
pu = D2 (sinh2 u + sin2 v) u̇,
pv = D2 (sinh2 u + sin2 v) v̇ ,

and the Hamiltonian in these coordinates is

H = Φ(u, v) +
p2
u + p2

v

2D2 (sinh2 u + sin2 v)
.

If the potential has the form Φ(u, v) =
U(u)− V (v)

sinh2 u + sin2 v
, then we may rearrange

the above expression (replacing H by the energy E ) to get
2D2

[
E sinh2 u − U(u)

]
− p2

u = p2
v − 2D2

[
E sin2 v + V (v)

]
.

Since the lhs depends only on u and rhs – only on v , both must equal to
some constant K . Thus the motion in both coordinates is separable.



Orbits in 2d Stäckel potentials
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Example: the oblate Perfect Ellipsoid potential in the prolate elliptic coordinates.

The equipotential surfaces (shown by black) are oblate (though not ellipsoidal), thus
for low enough energies they do not enclose the focal points, and all orbits are boxes.
For energies above the critical one, there is a transition between boxes and loops.



Orbits in generic 2d potentials
Example: the singular logarithmic potential.

Non-axisymmetric potentials usually have box and loop orbits, but in addition may
support various high-order resonant orbits, as well as chaotic ones. Singular potentials
do not have pure boxes (any orbit passing too close to the centre is ridden with chaos).

banana chaotic banana/box fish chaotic fish

pretzel chaotic box tube tube



Poincaré surface of section
A convenient tool for analyzing orbits in 2d Hamiltonian systems at a fixed E
(e.g., motion in the equatorial plane, or in the meridional plane of an axisymmetric

potential at a fixed Lz)

1. Numerically integrate the trajectory: x(t), y(t), px(t), py (t).

2. Every time it passes through the axis y = 0 with ẏ > 0, put a point on
the x , px plane.
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Poincaré surface of section
A convenient tool for analyzing orbits in 2d Hamiltonian systems at a fixed E
(e.g., motion in the equatorial plane, or in the meridional plane of an axisymmetric

potential at a fixed Lz)

3. Each orbit corresponds to a closed loop in this plane.

4. Repeat for many different initial conditions to get the “phase portrait”
of the Hamiltonian.
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Poincaré surface of section
A convenient tool for analyzing orbits in 2d Hamiltonian systems at a fixed E
(e.g., motion in the equatorial plane, or in the meridional plane of an axisymmetric

potential at a fixed Lz)

5. Now repeat this exercise for a different choice of energy E .
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Poincaré surface of section
A convenient tool for analyzing orbits in 2d Hamiltonian systems at a fixed E
(e.g., motion in the equatorial plane, or in the meridional plane of an axisymmetric

potential at a fixed Lz)

5. Now repeat this exercise for a different choice of energy E .

6. This portrait may contain more than one orbit family!
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Poincaré surface of section
A convenient tool for analyzing orbits in 2d Hamiltonian systems at a fixed E
(e.g., motion in the equatorial plane, or in the meridional plane of an axisymmetric

potential at a fixed Lz)

7. High-order resonances appear as orderly layered contour sets in the
Poincaré surface, and chaotic orbits – as scattered layers separating
the resonant islands.
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Motion in spherical 3d potentials
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meridional plane

Since all components of angular momentum vector L are conserved, the
orbit lies in a single plane, but it needs not be the equatorial (x − y) plane.
The inclination angle is defined as i = arccos(Lz/L), and the orbit in the
meridional plane (R − z) sweeps a section of an annulus.



Motion in axisymmetric 3d potentials
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In the axisymmetric case, the orbital plane still keeps a roughly constant
inclination for most orbits, but additionally precesses about the z axis.



Motion in axisymmetric 3d potentials
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3d Hamiltonian in cylindrical coordinates
x ≡ {R , φ, z}, p ≡ {Ṙ ,R2φ̇, ż}:
H(x,p) = Φ(R , z) + 1

2

[
p2
R + p2

φ/R
2 + p2

z

]
.

Again pφ ≡ R2φ̇ is the conserved z-component of
angular momentum Lz , motion in φ separates out,
and motion in the 2d meridional plane is governed by

a 2d effective potential Φeff(R , z) = Φ(R , z) +
L2
z

2R2
.

The most common z-axis tube orbit
looks like a “rectangular torus”,
resembling a box in meridional
cross-section.



Poincaré section in axisymmetric 3d potentials
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Lz = 0.75 Lcirc

For any value of E , the value of Lz can be between 0 and the maximum possible
value Lcirc(E ) – the angular momentum of a circular orbit in the z = 0 plane.
For Lz/Lcirc(E ) → 1, all orbits are tubes, stay close to the equatorial plane and
cover a small radial range.



Poincaré section in axisymmetric 3d potentials
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As the z-component of angular momentum is decreased at a fixed
energy, the orbits probe a larger region in the meridional plane,
either being more eccentric or reaching higher z . Some resonant
orbits might also appear, such as the “saucers”.



Poincaré section in axisymmetric 3d potentials
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At low Lz , even more bizarre types of resonant orbits spring into existence.
The Lz = 0 case is identical to the motion in a non-spherical 2d potential,
this time in the x − z rather than x − y plane (extending to “negative R”).



Epicyclic motion
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For close-to-circular orbits near the disc plane, the motion
in R and z is nearly separable and close to harmonic.
The guiding centre radius Rg is the minimum of
the effective potential Φeff ≡ Φ + L2

z/(2R2), and

Φeff(R , z) ≈ Φeff(Rg, 0) +
(R − Rg)2

2

∂2Φeff

∂R2
+

z2

2

∂2Φ

∂z2
.

Epicyclic frequencies at Rg:

azimuthal Ω ≡ Lz
R2

=

√
1

R

∂Φ

∂R
.

vertical ν ≡
√
∂2Φ

∂z2
.

radial κ ≡
√
∂2Φeff

∂R2
=

√
∂2Φ

∂R2
+

3

R

∂Φ

∂R
.

Typically Ω ≤ κ ≤ 2Ω, ν ≥ Ω.



Orbits in triaxial Stäckel potentials

(a) box

(d) short-axis tube

(b) inner long-axis tube (c) outer long-axis tube[de Zeeuw 1985]

4 main classes of orbits bounded by coordinate lines

x

y

z



Orbits in generic triaxial potentials, frequency maps
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Most potentials support the same 4 main
classes of orbits, but in addition may
contain various resonant orbit families,
as well as chaotic orbits.

All orbits with the given E can be
represented on a frequency map
[Papaphilippou&Laskar 1998, Valluri&Merritt 1998]

as ratios of frequencies Ωx/Ωz , Ωy/Ωz ,
where they concentrate along lines
representing stable resonances:
kxΩx + kyΩy + kzΩz = 0 with integer k .



Orbits and integrals of motion

How large is the variety of orbits?
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Orbits and integrals of motion

How large is the variety of orbits?
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Orbits and integrals of motion

How large is the variety of orbits?
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In general, regular orbits in typical stationary galactic
potentials conserve 3 integrals of motion: one is always
the energy E , and at a fixed energy, there are two more
degrees of freedom (roughly corresponding to eccentric-
ity and inclination).

The spherical case is degenerate in that it supports 4
integrals of motion (E and three components of the an-
gular momentum L).

In the axisymmetric case, the second integral is Lz , but
the “non-classical” third integral I3 (if exists), does not
have an explicit expression (except in a special class of fully

integrable potentials known as Stäckel potentials).

Triaxial potentials may support up to two “non-classical integrals”.

Not all orbits have the same number of integrals, and the physical
meaning of these integrals is different between orbit families.



Summary

I Orbits of stars in galaxies are usually regular and belong to one of
major families: boxes, loops (short- and long-axis).

I Nearly-circular orbits in axisymmetric discs can be treated within
the epicyclic approximation.

I Poincaré surface of section (for 2d potentials) or frequency map
(for 3d) are useful tools for analyzing ensembles of orbits supported
by the potential.

I Once potential is specified, numerical orbit integration is trivial.


