Modern stellar dynamics, lecture 4:

motion of stars

Eugene Vasiliev

Institute of Astronomy, Cambridge

Part III / MAst course, Winter 2022

Hamiltonian mechanics

Fundamental concepts of Hamiltonian mechanics:

Hamiltonian $H(\mathbf{q}, \mathbf{p})$, where \mathbf{q} are generalized coordinates, \mathbf{p} are generalized momenta. Equations of motion:

 $\dot{\mathbf{q}} = \frac{\partial H}{\partial \mathbf{p}}, \\ \dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{q}}.$

In the simplest case, **q** would be Cartesian coordinates $\mathbf{x} \equiv \{x, y, z\}$, and **p** – corresponding velocity components $\mathbf{v} \equiv \{v_x, v_y, v_z\}$.

$$H(\mathbf{x},\mathbf{v}) = \Phi(\mathbf{x}) + \frac{1}{2}|\mathbf{v}|^2.$$

1d harmonic potential

Simplest possible Hamiltonian system with bound motion:

harmonic oscillator: $H(x,p) = \frac{1}{2}\Omega^2 x^2 + \frac{1}{2}p^2$.

Not a totally idealized case:

$$\Phi(x) \propto x^2 \implies \rho(x) \propto \frac{d^2 \Phi}{dx^2} \propto \text{const.}$$

Constant-density cores are commonly encountered in many stellar systems.

2d harmonic potential

Same in more than one dimension:

$$H(\mathbf{x}, \mathbf{p}) = \frac{1}{2} \left[\Omega_x^2 \, x^2 + p_x^2 \right] + \frac{1}{2} \left[\Omega_y^2 \, y^2 + p_y^2 \right] + \dots$$

Separable Hamiltonian – each dimension can be integrated independently; the orbit is a Lissajous figure filling a rectangle (if frequencies are incommensurable).

2d planar motion in a spherical potential

2d Hamiltonian in polar coordinates R, ϕ for a spherically-symmetric potential:

$$H(\mathbf{x}, \mathbf{p}) = \Phi(R) + \frac{1}{2} [p_R^2 + p_{\phi}^2/R^2].$$

Since *H* is independent of ϕ , the Hamilton equation reads $\dot{p}_R = -\partial H/\partial \phi = 0$, and the corresponding momentum p_{ϕ} (angular momentum $L \equiv R v_{\phi} = R^2 \dot{\phi}$) is an integral of motion.

The remaining 1d motion occurs in the effective potential

$$\Phi_{\rm eff}(R)\equiv \Phi(R)+rac{L^2}{2\,R^2}.$$

2d planar motion in a spherical potential

The radial momentum (\equiv velocity) is $p_R(R) = \pm \sqrt{2[E - \Phi(R)] - L^2/R^2}$; bound motion occurs between R_{peri} and R_{apo} – the two roots of $p_R(R) = 0$ (peri- and apocentre radii). The period of radial oscillations is

$$T_R \equiv 2 \int_{R_{\text{peri}}}^{R_{\text{apo}}} \frac{\mathrm{d}R}{p_R(R)}.$$

During this time, the azimuthal angle increases by

$$\Delta \phi = \int_0^{T_R} \mathrm{d}t \; \dot{\phi} = 2 \int_{R_{\mathrm{peri}}}^{R_{\mathrm{apo}}} \frac{\mathrm{d}R}{p_R(R)} \frac{L}{R^2}.$$

The azimuthal period is defined as $T_{\phi} \equiv \frac{2\pi}{\Delta \phi} T_R$.

In general, the two periods are not commensurable, hence the orbit densely fills an annulus. For realistic potentials, $1/2 \leq T_R/T_\phi \leq 1$, with the two limiting cases attained respectively in the harmonic and Kepler potentials.

Orbits in 2d Stäckel potentials

Consider the 2d elliptical coordinate system u, v

[note the different orientation w.r.t the previous lecture!]

$$\begin{aligned} x &= D \, \sinh u \, \sin v \\ y &= D \, \cosh u \, \cos v \end{aligned}, \qquad 0 \leq u, \ 0 \leq v \leq 2\pi \end{aligned}$$

The generalized momenta corresponding to u, v are $p_u = D^2 (\sinh^2 u + \sin^2 v) \dot{u},$ $p_v = D^2 (\sinh^2 u + \sin^2 v) \dot{v},$

and the Hamiltonian in these coordinates is

$$H = \Phi(u, v) + \frac{p_u^2 + p_v^2}{2D^2 (\sinh^2 u + \sin^2 v)}.$$

If the potential has the form $\Phi(u, v) = \frac{U(u) - V(v)}{\sinh^2 u + \sin^2 v}$, then we may rearrange the above expression (replacing *H* by the energy *E*) to get $2D^2 \left[E \sinh^2 u - U(u)\right] - p_u^2 = p_v^2 - 2D^2 \left[E \sin^2 v + V(v)\right]$. Since the lhs depends only on *u* and rhs – only on *v*, both must equal to some constant *K*. Thus the motion in both coordinates is separable.

Orbits in 2d Stäckel potentials

Example: the oblate Perfect Ellipsoid potential in the prolate elliptic coordinates.

The equipotential surfaces (shown by black) are oblate (though *not* ellipsoidal), thus for low enough energies they do not enclose the focal points, and all orbits are boxes. For energies above the critical one, there is a transition between boxes and loops.

Orbits in generic 2d potentials

Example: the singular logarithmic potential.

Non-axisymmetric potentials usually have box and loop orbits, but in addition may support various high-order resonant orbits, as well as chaotic ones. Singular potentials do not have pure boxes (any orbit passing too close to the centre is ridden with chaos).

- **1.** Numerically integrate the trajectory: $x(t), y(t), p_x(t), p_y(t)$.
- 2. Every time it passes through the axis y = 0 with $\dot{y} > 0$, put a point on the x, p_x plane.

- **1.** Numerically integrate the trajectory: $x(t), y(t), p_x(t), p_y(t)$.
- 2. Every time it passes through the axis y = 0 with $\dot{y} > 0$, put a point on the x, p_x plane.

- **1.** Numerically integrate the trajectory: $x(t), y(t), p_x(t), p_y(t)$.
- 2. Every time it passes through the axis y = 0 with $\dot{y} > 0$, put a point on the x, p_x plane.

- **1.** Numerically integrate the trajectory: $x(t), y(t), p_x(t), p_y(t)$.
- 2. Every time it passes through the axis y = 0 with $\dot{y} > 0$, put a point on the x, p_x plane.

- **1.** Numerically integrate the trajectory: $x(t), y(t), p_x(t), p_y(t)$.
- **2.** Every time it passes through the axis y = 0 with $\dot{y} > 0$, put a point on the x, p_x plane.

- 3. Each orbit corresponds to a closed loop in this plane.
- Repeat for many different initial conditions to get the "phase portrait" of the Hamiltonian.

A convenient tool for analyzing orbits in 2d Hamiltonian systems at a fixed E (e.g., motion in the equatorial plane, or in the meridional plane of an axisymmetric potential at a fixed L_z)

5. Now repeat this exercise for a different choice of energy E.

- 5. Now repeat this exercise for a different choice of energy E.
- 6. This portrait may contain more than one orbit family!

A convenient tool for analyzing orbits in 2d Hamiltonian systems at a fixed E (e.g., motion in the equatorial plane, or in the meridional plane of an axisymmetric potential at a fixed L_z)

7. High-order resonances appear as orderly layered contour sets in the Poincaré surface, and chaotic orbits – as scattered layers separating the resonant islands.

Motion in spherical 3d potentials

Since all components of angular momentum vector **L** are conserved, the orbit lies in a single plane, but it needs not be the equatorial (x - y) plane. The inclination angle is defined as $i = \arccos(L_z/L)$, and the orbit in the meridional plane (R - z) sweeps a section of an annulus.

Motion in axisymmetric 3d potentials

In the axisymmetric case, the orbital plane still keeps a roughly constant inclination for most orbits, but additionally precesses about the z axis.

Motion in axisymmetric 3d potentials

3d Hamiltonian in cylindrical coordinates $\mathbf{x} \equiv \{R, \phi, z\}, \ \mathbf{p} \equiv \{\dot{R}, R^2 \dot{\phi}, \dot{z}\}:$ $H(\mathbf{x}, \mathbf{p}) = \Phi(R, z) + \frac{1}{2} [p_R^2 + p_{\phi}^2/R^2 + p_z^2].$

Again $p_{\phi} \equiv R^2 \dot{\phi}$ is the conserved *z*-component of angular momentum L_z , motion in ϕ separates out, and motion in the 2d meridional plane is governed by

a 2d effective potential $\Phi_{\text{eff}}(R, z) = \Phi(R, z) + \frac{L_z^2}{2R^2}$. The most common *z*-axis tube orbit looks like a "rectangular torus", resembling a box in meridional cross-section.

Poincaré section in axisymmetric 3d potentials

For any value of E, the value of L_z can be between 0 and the maximum possible value $L_{circ}(E)$ – the angular momentum of a circular orbit in the z = 0 plane. For $L_z/L_{circ}(E) \rightarrow 1$, all orbits are tubes, stay close to the equatorial plane and cover a small radial range.

Poincaré section in axisymmetric 3d potentials

As the *z*-component of angular momentum is decreased at a fixed energy, the orbits probe a larger region in the meridional plane, either being more eccentric or reaching higher *z*. Some resonant orbits might also appear, such as the "saucers".

Poincaré section in axisymmetric 3d potentials

At low L_z , even more bizarre types of resonant orbits spring into existence. The $L_z = 0$ case is identical to the motion in a non-spherical 2d potential, this time in the x - z rather than x - y plane (extending to "negative R").

Epicyclic motion

Orbits in triaxial Stäckel potentials

4 main classes of orbits bounded by coordinate lines

(d) short-axis tube

Orbits in generic triaxial potentials, frequency maps

Most potentials support the same 4 main classes of orbits, but in addition may contain various resonant orbit families, as well as chaotic orbits.

All orbits with the given *E* can be represented on a frequency map [Papaphilippou&Laskar 1998, Valluri&Merritt 1998] as ratios of frequencies Ω_x/Ω_z , Ω_y/Ω_z , where they concentrate along lines representing stable resonances: $k_x\Omega_x + k_y\Omega_y + k_z\Omega_z = 0$ with integer *k*.

How large is the variety of orbits?

How large is the variety of orbits?

How large is the variety of orbits?

How large is the variety of orbits?

In general, *regular* orbits in *typical* stationary galactic potentials conserve 3 integrals of motion: one is always the energy E, and at a fixed energy, there are two more degrees of freedom (roughly corresponding to eccentricity and inclination).

The spherical case is degenerate in that it supports 4 integrals of motion (E and three components of the angular momentum **L**).

In the axisymmetric case, the second integral is L_z , but the "non-classical" third integral I_3 (if exists), does not have an explicit expression (except in a special class of fully integrable potentials known as Stäckel potentials).

Triaxial potentials may support up to two "non-classical integrals". Not all orbits have the same number of integrals, and the physical meaning of these integrals is different between orbit families.

Summary

- Orbits of stars in galaxies are usually regular and belong to one of major families: boxes, loops (short- and long-axis).
- Nearly-circular orbits in axisymmetric discs can be treated within the epicyclic approximation.
- Poincaré surface of section (for 2d potentials) or frequency map (for 3d) are useful tools for analyzing ensembles of orbits supported by the potential.
- Once potential is specified, numerical orbit integration is trivial.