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Distribution function in stellar dynamics

Distribution function f (x, v) is the probability density in the phase space
(in this lecture, normalized as

∫
f (x, v) d3x d3v = M).

Jeans theorem tells us that in a steady state, the DF may only depend
on the integrals of motion (which themselves depend on the potential):
f (x, v) = f

(
I(x, v; Φ)

)
One can choose I to be energy, angular momentum L (in spherical
systems) or its z-component (in axisymmetric systems), etc.,
or alternatively the triplet of actions J.

The goal is to find f (I) given ρ(x) and Φ(x) (not necessarily related by
the Poisson equation), or vice versa, given f (I), determine ρ and Φ
related by the Poisson equation (that is, gravitationally self-consistent).



Distribution function in spherical systems

r

η
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. . . may depend on E and L (and in principle on Lz if the model is rotating).

So we write f (x, v) = f (E , L), but the DF is still understood as the probability
density in the 6d phase space, not in the E , L space!

To obtain the density generated by the DF in the
given potential (and various other quantities of
interest, e.g., velocity dispersions), we integrate
the DF over the 3d velocity at the given position.

Define the radial and tangential velocity components
vr , vt in the spherical polar coordinates aligned with
the radius vector:
vr = v cos η, vt = v sin η, η ∈ [0..π].
Then E = Φ(r) + 1

2
v 2, L = r vt , and integration over velocity is performed as∫

d3v f (x, v) =

∫ vescape

0

dv 2π v 2

∫ π

0

dη sin η f
(
Φ(r) + 1

2
v 2, r v sin η

)
,

where vescape ≡
√
−2
[
Φ∞ − Φ(r)

]
and Φ∞ is the potential at the edge of the model.



Distribution function in spherical systems

Obviously, one cannot uniquely determine a function of two variables f (E , L) from
two functions of one variable ρ(r), Φ(r): same fundamental problem as in the
Jeans equations.

Different choices of DF may give the same density profile, but will have different
kinematic properties.

On the other hand, we may reasonably expect that isotropic DFs f (E ) have a 1:1
correspondence to spherical density–potential pairs.

The integration over velocity is reduced to

ρ(r) =

∫ vescape(r)

0

dv 4π v 2 f
(
Φ(r) + 1

2
v 2),

and changing the integration variable from v to E , we get

ρ(r) = 4π

∫ Φ∞

Φ(r)

dE
√

2
[
E − Φ(r)

]
f (E ).

Consider first the problem of determining ρ(r) and Φ(r) from f (E ).



Spherical polytrope models

Assume f (E ) = A |E |n−3/2, after substituting E = Φ x , we have

ρ = 4π

∫ 0

Φ

dE
√

2(E − Φ) f (E )

= 4
√

2π A

∫ 1

0

dx |Φ|3/2+n−3/2 xn−3/2 (1− x)1/2

= 4
√

2π A |Φ|n B(n − 1/2, 3/2) = 2
√

2 π3/2 Γ(n−1/2)
Γ(n+1)

G A |Φ|n, n > 1/2.

Plugging this into the Poisson equation, we get

4π G ρ = ∇2Φ =
1

r 2

d

dr

(
r 2 dΦ

dr

)
= 8
√

2π5/2 Γ(n−1/2)
Γ(n+1)

A
[
− Φ(r)

]n
.

This is the Lane–Emden equation, also appearing in the theory of stellar structure.

It admits a power-law solution Φ = Φ0 r
−α, and we want Φ0 < 0 and 0 < α ≤ 1:

−α(1− α) Φ0 r
−α−2 = 8

√
2 π5/2 Γ(n−1/2)

Γ(n+1)
A [−Φ0]n r−nα ⇒ α = 2/(n − 1).

These scale-free models exist for n ≥ 3 and have ρ ∝ r−α−2 (i.e., ∞ total mass and

Φ(0) = −∞); in the limit α→ 0 this is a singular isothermal sphere.



Spherical polytrope models

The Lane–Emden equation also admits more interesting non-power-law solutions
that are regular at origin; in the cases n = 1 and n = 5 the solution is analytic.

Namely, the Plummer model Φ(r) = − G M√
r2 + a2

satisfies the Lane–Emden equation

for n = 5 and A =
24
√

2 a2

7π3 G 5 M4
.

Polytropes with 1/2 < n < 5 have
finite radius and mass; Plummer
model has infinite radius but finite
mass, and for n > 5 both radius
and mass are infinite.

The density profile of these models
is the same as in a self-gravitating
gas sphere with a polytropic equa-
tion of state P ∝ ργ , γ = 1 + 1/n.
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Isothermal and lowered isothermal models
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The limit of polytropic models as n→∞ is the isothermal DF f (E )=A exp
(
− E

σ2

)
.

ρ = 4πA

∫ ∞
Φ

dE
√

2(E − Φ) A exp(−E/σ2) = 2
√

2π3/2 Aσ3 exp(−Φ/σ2).

4π G ρ = ∇2Φ =
1

r 2

d

dr

(
r 2 dΦ

dr

)
= 8
√

2π5/2 G Aσ3 exp
(
− Φ(r)/σ2

)
.

Again it’s easy to find a power-law
solution – singular isothermal sphere
Φ = 2σ2 ln r , ρ = σ2/(2π G r2).
A non-singular numerically computed
solution has a finite-density core and
tends to ρ ∝ r−2 at large r .
A modification of the DF to
f (E ) = A

[
exp(−E/σ2)− 1

]
produces truncated isothermal (King)
models parametrized by the relative
depth of the potential well
W0 ≡ [Φ(rtrunc)− Φ(0)]/σ2,
which are often used to describe globular clusters.



Eddington inversion formula

A general expression for the density produced by an isotropic DF f (E ) is

ρ(r) =

∫ √
2
[

Φ∞−Φ(r)
]

0
dv 4π v2 f

(
Φ(r) +

v2

2

)
= 4
√

2π

∫ Φ∞

Φ(r)
dE
√

E − Φ(r) f (E ).

We want to determine the DF f (E ) that produces the given density ρ(r)
in the given potential Φ(r) (not necessarily related by the Poisson equation).

This integral expression looks quite like the fractional integral from Lecture 2,
so can be inverted using the Abel formula, but with two modifications:
first, we express ρ as a function of Φ rather than r (this is possible since

the potential is monotonic with radius); and second, we need to move
√
E − Φ

into the denominator by differentiating both sides w.r.t. Φ:

dρ(Φ)

dΦ
= 4
√

2π
d

dΦ

∫ Φ∞

Φ
dE
√
E − Φ f (E ) = −2

√
2π

∫ Φ∞

Φ
dE

f (E )√
E − Φ

.

The Abel inversion formula then gives the Eddington DF:

f (E ) =
1√
8π2

d

dE

∫ Φ∞

E

dΦ√
Φ−E

dρ

dΦ
=

1√
8π2

[∫ Φ∞

E

dΦ√
Φ−E

d2ρ

dΦ2
− 1√

Φ∞−E
dρ

dΦ

∣∣∣
Φ=Φ∞

]
usually 0, but see Lacroix+ 2018

usually 0



Eddington inversion formula

f (E ) =
1√
8π2

d

dE

∫ Φ∞

E

dΦ√
Φ−E

dρ

dΦ
.

The DF obtained by the Eddington inversion is not guaranteed to be non-negative;
however, unlike Jeans equations, we may explicitly check this condition.

To use the Eddington inversion formula, one needs to express ρ as a function of Φ,
which is not always an easy task; the integral itself can be taken analytically only
in some simple cases, and even then the resulting expressions may be unwieldy:

for example, the γ = 1 Dehnen model: Φ(r) = − G M

r + a
, ρ(r) =

M a

2π r (r + a)3
⇒

f (E ) =
1

27/2π3 (G M a)3/2

[√
x (1− 2x)(8x2 − 8x − 3)

(1− x)2
+

3 arcsin
√
x

(1− x)5/2

]
, x ≡ − E a

G M
.

On the other hand, this integral can be computed numerically for any given com-
bination of ρ and Φ.



Anisotropic spherical systems
There are infinitely many f (E , L) that generate the given ρ(r) in the given Φ(r).

One possible choice is to consider a factorized DF f (E , L) = fE (E ) fL(L).
For example, fL = L−2β produces models with a constant velocity anisotropy
β = 1− σ2

t /(2σ2
r ).

ρ(r) =

∫ √
2
[

Φ∞−Φ(r)
]

0

dv 2π v 2 fE

(
Φ(r) +

v 2

2

)∫ π

0

dη sin η (r v sin η)−2β

= 2π

∫ Φ∞

Φ(r)

dE
{

2[E − Φ(r)]
}1/2−β

r−2β fE (E ) B(1/2, 1− β).

This is very similar to the expression in the isotropic case, and we proceed in the
same way: first express ρ(r) r 2β as a function of Φ, then take as many derivatives
w.r.t. Φ as needed to put [E − Φ]a in the denominator with 0 ≤ a < 1, and then
applying the Abel integral inversion.
For half-integer values of β, there is no fractional integration at all:

e.g., β = 1/2 ⇒ fE (E ) = − 1

2π2

d(ρ r)

dΦ
, β = −1/2 ⇒ fE (E ) =

1

2π2

d2(ρ/r)

dΦ2
.



Anisotropic spherical systems
Another common approach [Osipkov 1979; Merritt 1985] is to consider DFs of the form
f (E , L) = fQ(Q), Q ≡ E + L2/(2r 2

a ), where ra is the “anisotropy radius”.

ρ(r) =

∫ π

0

dη sin η

∫ √
2
[

Φ∞−Φ(r)
]

0

dv 2π v 2 fQ

(
Φ(r) +

v 2

2

[
1 +

r 2

r 2
a

sin2 η
])

.

Changing the integration variable from v to Q in the inner integral, we get

ρ(r) = 2π

∫ π

0

dη sin η

∫ Φ∞

Φ(r)

dQ fQ(Q)

√
2(Q − Φ)[

1 + (r/ra)2 sin2 η
]3/2

.

After exchanging the order of integration, the inner integral is taken analytically,

ρ(r) =
4
√

2π

1 + (r/ra)2

∫ Φ∞

Φ(r)

dQ
√

Q − Φ f (Q).

This is again very similar to the isotropic case – we need to express
[
1+(r/ra)2

]
ρ(r)

as a function of Φ, then differentiate both sides w.r.t. Φ, and apply the Abel
inversion formula.

These models have radially varying velocity anisotropy profiles β(r) = r 2/(r 2 +r 2
a ),

which change from isotropic (0) at r � ra to completely radial (1) at r � ra.



Anisotropic spherical systems
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Velocity distributions of
anisotropic DF models may be
quite strongly non-gaussian!

In addition to constant-β
and Osipkov–Merritt models
(or a combination of both
using the same Abel inversion
technique [Cuddeford 1991]),
there are various other DF
forms that permit an inversion
ρ,Φ ⇒ f (E , L) [Gerhard 1991;

Saha 1992; Wojtak+2008].

The opposite approach
f (E , L)⇒ ρ,Φ also produces
anisotropic generalizations,
e.g., of King models [Michie

1963; Gieles&Zocchi 2015].



Distribution function in axisymmetric systems
With two classical integrals of motion, we can construct DFs of the form f (E , Lz).
Define the velocity components in spherical coordinates
as follows: azimuthal vφ = v cos η and meridional
vm = v sin η, η ∈ [0..π], with vm further split into
vR = vm sin ξ and vz = vm cos ξ, ξ ∈ [0..2π).
Then the density is computed from the DF as

ρ(R , z) =

∫ vescape

0

dv 2π v 2

∫ π

0

dη sin η f
(
Φ(R , z) + 1

2
v 2, R v cos η

)
.

Since ρ and Φ are also functions of two variables R , z ,
we might expect that there is a unique correspondence between the DF
and the potential–density pair. This is indeed the case, but the derivation of
f (E , Lz) from ρ,Φ (analogue of the Eddington inversion formula) is a rather cum-
bersome task involving contour integrals in the complex plane [Hunter&Qian 1993].

Moreover, these two-integral models necessarily have equal velocity dispersions in
the two meridional plane components σR , σz , which is rather unrealistic (in the
Milky Way disc, σR/σz ' 1.5−2). Thus we need three-integral models f (E , Lz , I3).
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Distribution functions for axisymmetric discs
Most stars in disc galaxies move on close-to-circular orbits, which can be considered
in the epicyclic approximation, i.e., separable motion in Φeff(R) and Φz(z).

Consider first an infinitely cold system with all stars on exactly circular orbits in
the z = 0 plane. Then the DF for the 2d planar motion is
f (E , Lz) = S(Lz) δ

[
E − Ecirc(Lz)

]
,

where Ecirc(Lz) ≡ Φ(Rcirc) +
Rcirc

2

∂Φ

∂R

∣∣∣
R=Rcirc

and Rcirc(Lz) is the root of R3 ∂Φ

∂R
= Lz .

The corresponding surface density is Σ(R) =
π κ

Ω
S(Ω2 R), where κ and Ω are the

radial and azimuthal epicyclic frequencies evaluated at the radius R .

To produce “warm” discs, we replace δ-function by a Gaussian and add a vertical
dimension with a third [approximate] integral of motion Ez ≡ Φ(R, z)−Φ(R, 0)+ 1

2v
2
z :

f (ER , Lz ,Ez) = S(Lz) exp

[
−ER − Ecirc(Lz)

σ2
R(Lz)

− Ez

σ2
z (Lz)

]
.

The three adjustable functions S , σR and σz control the surface density and radial
and vertical velocity dispersions (and match them quite well when σ � vcirc).

[Shu 1969; see also Dehnen
1999 for a similar recipe]



Distribution functions for warm axisymmetric discs
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Increasing the velocity dispersion in the disc DF keeps f (vR) and f (vz) quite
close to Gaussian distributions, but produces increasingly asymmetrically shaped
f (vφ), which are peaked at a different vφ than the local circular velocity vcirc

– a phenomenon known as “asymmetric drift”. The high-velocity wing vφ >
vcirc is produced by stars near their pericentres (i.e., coming from larger radii),
and conversely, vφ < vcirc represent stars coming from smaller radii near their
apocentres. The latter population is typically more numerous since both surface
density and velocity dispersion decrease with radius, thus normally vφ < vcirc;
however, for some populations these trends may be reversed.



Action-based distribution functions
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The epicyclic approximation is only valid for cold enough orbits
(low eccentricity and inclination). For larger excursions in R and
z the motion is not quite separable in the cylindrical coordinates,
but is still regular for most orbits, hence conserves 3 integrals,
which may be chosen to be actions (usually computed in the
Stäckel approximation).

Action-based disc DFs are constructed by replacing ER = Φ(R , 0)− Φ(Rg) + 1
2
v 2
R

with κ JR and Ez ≡ Φ(Rg, z)− Φ(Rg, 0) + 1
2
v 2
z with ν Jz :

f (J) =
Σ Ω

2π2 κ2
× κ

σ2
r

exp

[
−κ Jr
σ2
r

]
× ν

σ2
z

exp

[
−ν Jz
σ2
z

]
×
{

1 if Jφ ≥ 0,

exp
(

2Ω Jφ
σ2
r

)
if Jφ < 0,

where Σ and σr ,z are adjustable functions of Rg controlling the surface density and
velocity dispersion profiles, κ, ν,Ω are epicyclic frequencies (also functions of Rg),
and the guiding-centre radius Rg is a function of [mainly] Jφ [Binney&McMillan 2012].

Spheroidal models can be constructed with “double-power-law” action-based DFs

f (J) = A
[
1 +

(
J0/h(J)

)η]Γ/η [
1 +

(
g(J)/J0

)η](Γ−B)/η
[Posti+ 2015],

where h(J), g(J) are some linear combinations of actions at small and large radii.



Self-consistent distribution function-based models

A general DF f (I) is specified in terms of integrals of motion in the given potential
I(x, v; Φ). To compute the density ρ(x) generated by this DF, one needs to know
Φ(x), but in the gravitationally self-consistent case, Φ is determined by ρ via the
Poisson equation – thus we have a circular dependency.

Such models are constructed by the iterative approach [Prendergast & Tomer 1975;

Rowley 1988; Kuijken & Dubinski 1995; Widrow+ 2005], which works best for action-based
DFs [Binney 2014; Piffl+ 2015; Sanders & Evans 2016; Vasiliev 2019]:

1. assume f (I) and
an initial guess for Φ

2. repeat
establish I(x, v; Φ)

compute ρ(x) =∫∫∫
d3v f

(
I(x, v)

)
update Φ(x) from
the Poisson equation

converged?
no yes

3. enjoy!



Summary

I Steady-state distribution functions depend only on the integrals of
motion in the given potential.

I At least for spherical and axisymmetric systems, there is a considerable
freedom in constructing a DF that produces a given density profile.

I Therefore, the path from ρ,Φ to f is not unique – one must choose a
functional form of the DF first, and then use some sort of “inversion
formula” (e.g., Eddington).

I The path from f to a self-consistent ρ,Φ pair isn’t easy either;
in spherical systems it reduces to solving a 2nd order ODE, and more
generally, requires an iterative solution.

I Bottom line: it’s complicated but doable.


