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Hyperbolic orbit in a Kepler potential
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Recall the general derivation of planar axisymmetric orbits from Lecture 4.
Two integrals of motion E = 1

2
v 2
∞, L = v∞ b (b is the impact parameter).

Radial velocity vr = ±
√

2[E − Φ(r)]− L2/r 2 = ±
√

v 2
∞ (1− b2/r 2) + 2 G M/r .

The distance of closest approach rmin is where vr = 0; solving this quadratic
equation, we get rmin = b

p+
√

p2+1
, where p ≡ G M

v2
∞ b

describes the strength of

interaction. The deflection angle is ∆φ = 2 arctan p.



Dynamical friction
Now let the mass M move with velocity v through a uniform population of sta-
tionary field stars with masses mf � M and number density n.
If we consider the problem in the moving reference frame associated with the mass
M , it is equivalent to the previous setup.
Field stars arrive with all possible impact parameters b; the rate of encounters in
the interval [b .. b +δb] per unit time is δν = 2π b δb n v . The velocity component
of incoming field stars parallel to the motion of the mass M is reduced by

∆v‖ = (1− cos ∆φ) v = 2v
p2

p2 + 1
=

2v

1 + (b/b90)2
, where b90 ≡

G M

v 2
.

The conservation of linear momentum implies that the mass M is decelerated:
M v̇ = −mf ∆v‖ δν. Integrating over impact parameters, we get

aDF = −
∫ bmax

0

db 2π b n v
mf

M

2v

1 + (b/b90)2
= −4π n

mf

M
v 2 b2

90 ln
√

1 +
[
bmax

b90

]2
= −4π G 2 ρf M ln Λ/v 2, where

ρf ≡ n mf is the mass density of field stars, and ln Λ = ln(bmax/b90) is the Coulomb
logarithm. We have to put some upper limit bmax, which is usually taken to be
the size of the stellar system, or the size of the orbit of the massive object M .
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Dynamical friction
When the field stars have a Maxwellian velocity distribution with 1d dispersion σ,

aDF = −4π G 2 M ρ ln Λ

v 2

[
erf(X )− 2X√

π
exp(−X 2)

]
, X ≡ v√

2σ
.

The dynamical friction can be thought of as a gravitational pull caused by
an overdensity of field stars behind the moving mass M [Mulder 1983]:

[Chandrasekhar 1943]



Dynamical friction properties
– the acceleration is proportional to the mass M – more massive objects create a
larger density wake and are slowed down more efficiently.
– the acceleration is independent of the masses mf of field stars (only on their
total mass density ρf); in this sense, it is a collisionless effect that remains in place
even when mf → 0.
– the acceleration is caused [primarily] by stars moving slower than the massive
body (in a more accurate treatment with a velocity-dependent Coulomb logarithm, some

acceleration is also caused by faster stars, but their contribution is smaller by a factor

ln Λ [Antonini & Merritt 2012]).
– when the mass M is not much larger than the mass of field stars mf , a slightly
more complicated derivation leads to a similar expression, but with M replaced by
M + mf .
– if the massive object is extended, the lower bound on the impact parameter b90

in the Coulomb logarithm is replaced by the characteristic size of the object.

Dynamical friction is usually unimportant for individual stars (although it causes mass

segregation in globular clusters, as we will see later), but may lead to a significant
orbital decay of globular clusters or satellite galaxies in the host galaxy’s potential.



Two-body encounters
Consider now the changes in the perpendicular component of velocity ∆v⊥ =
v sin ∆φ = 2v p/(1 + p2). Since incoming stars are deflected in all possible
directions, the mean change 〈∆v⊥〉 = 0, but the mean-square change is nonzero.
Assuming uncorrelated encounters and integrating over all impact parameters, we
get the rate of change per unit time

〈∆v 2
⊥〉 =

∫ bmax

0

db 2π b n v
4v 2 [b90/b]2

(1 + [b90/b]2)2
≈ 8π n G 2 M2 ln Λ

v
.

The mean-square change in the parallel velocity component 〈∆v 2
‖ 〉 is the same.

If the field stars have some velocity distribution and their masses are comparable to
the test star mass, we need to consider the scattering process in the centre-of-mass
frame and transform the velocity changes back to the inertial frame. In the end,

〈∆v‖〉 = −4π G 2 (M + mf) ρf ln Λ

v2
F1(X ), 〈∆v2‖ 〉 =

8π G 2mf ρf ln Λ

v
F2(X ),

〈∆v2⊥〉 =
8π G 2mf ρf ln Λ

v
F3(X ), where the dimensionless functions F... ∼ O(1)

depend on the ratio X = v/
√

2σ and the details of the velocity distribution of
field stars [Rosenbluth+ 1957; eq.L.26 in Binney&Tremaine].



Two-body relaxation rate

The time needed to change v 2 by order of itself is
v2

〈∆v2‖ 〉
=

v3

8π G 2mf ρf ln Λ
.

After some futher twiddling, we obtain the relaxation time

Trel =
0.34σ3

G 2 ρf mf ln Λ
.

One may compare it to the crossing time (orbital period) Tcross ' L/σ, where L
is the characteristic size of the system. From the virial theorem, G Mtotal ' σ2 L,
where Mtotal ≡ N mf is the total mass of the system. Thus

Trel

Tcross
' 0.34σ3

G 2 ρf mf ln Λ

σ

L
' 0.34 (G Mtotal)

2

G 2 ρf L3 mf ln Λ
' 0.1 N

ln Λ
,

and the Coulomb logarithm is ln Λ = ln[L/b90] ' ln[Lσ2/(G mf)] ' ln N .

This confirms that in stellar systems with N � 1, the relaxation time is much
longer than the dynamical time (and often longer than the age of the Universe), so
they can be meaningfully described in the collisionless approximation for t � Trel.

The above estimates were rather qualitative and careless about numerical factors
of order unity; later we will develop a more rigorous theory.



Collisional Boltzmann equation

Denote the 6d phase-space point as w ≡ {x, v} or some other canonical coordinates.
We start from the same Boltzmann equation for the one-particle distribution func-
tion f (w, t) as in Lecture 6, but now put an encounter operator Γ[f ] in the right-
hand side:
df (w, t)

dt
≡ ∂f

∂t
+
[
H(w, t), f

]
= Γ[f ], where [H , f ] is the Poisson bracket,

Γ[f ] =
∫

d6(∆w)
[
Ψ(w −∆w,∆w) f (w −∆w) − Ψ(w,∆w) f (w)

]
describes the rate of change of the DF due to stellar encounters,
Ψ(w,∆w) d6(∆w) ∆t is the probability that a star at point w changes its phase-
space coordinates by ∆w in a short interval of time ∆t.
The two terms in the encounter operator correspond to flux of stars from other
points into w, and the opposite flux of stars away from w, which are proportional
to the transition probability times the values of the DF at the points.

So far this is not very constructive; we now make two simplifying assumptions:
– encounters are weak, thus Ψ can be expanded to second order in ∆w� w;
– encounters are local, i.e. affect only velocity, but not position (i.e. ∆x = 0).



Fokker–Planck equation

gradient (row-vector) hessian (tensor)

With these two approximations, the encounter term becomes

Γ[f ] =

∫
d3(∆v)

[
Ψ(w −∆v,∆v) f (w −∆v) − Ψ(w,∆v) f (w)

]
≈
∫

d3(∆v)
[
Ψ(w,∆v) f (w)− ∂[Ψ f ]

∂v
∆v+ 1

2∆vT
∂2[Ψ f ]

∂v∂v
∆v − Ψ(w,∆v) f (w)

]

= −
3∑

i=1

∂
[
〈∆vi 〉 f

]
∂vi

+ 1
2

3∑
i ,j=1

∂2
[
〈∆vi∆vj〉 f

]
∂vi ∂vj

, where

〈∆vi〉 ≡
∫

d3(∆v) Ψ(w,∆v) ∆vi and 〈∆vi∆vj〉 ≡
∫

d3(∆v) Ψ(w,∆v) ∆vi ∆vj

are the advection (drift) and diffusion coefficients evaluated at point w.

The equation df /dt = Γ[f ] with the above derived encounter term is known as the
Fokker–Planck equation, and is essentially a diffusion equation in velocity space.
It is a linear PDE for the DF of test stars f (which experience two-body scattering),
and the drift and diffusion coefficients are determined by the distribution of field
stars (which act as scatterers).
However, ultimately the population of field stars consist of all species of test stars.



Fluctuation–dissipation balance
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In the ordinary diffusion process, the mean-square velocity would increase linearly
with time (random walk). The “purpose” of the drift term is to prevent this, so
that v 2 has a finite and time-independent expectation value.
Since 〈∆v〉 ∝ M + mf (as in dynamical friction), the mean square velocity is lower
for massive objects (v 2 ∝ M−1, i.e. equipartition of kinetic energy).
By contrast, diffusion coefficients 〈∆v 2〉 are independent of M , but ∝ mf .



Orbit-averaged Fokker–Planck equation

bmax

b90

As we have established that the relaxation time is typically much longer than
dynamical time, it makes sense to average the FP equation over the orbit of the
test star. This is most clearly expressed by changing variables from position–
velocity to action–angle, and then averaging the diffusion coefficients over angles.

In doing so, we make another approximation: even though the cumulative effect of
two-body interactions was integrated over impact parameters assuming a spatially
uniform distribution of stars moving along straight lines, we now return to a more
physically meaningful setup of bound motion in a non-uniform system.

The reason for validity of this approxi-
mation is again ln Λ ∼ O(10)� 1:
every logarithmic interval in impact pa-
rameter b contributes roughly equally to
the relaxation rate, so most of the scat-
tering effect is accumulated in the range
b90 � b � bmax, where the distribution
of field stars is still close to uniform.



Orbit-averaged Fokker–Planck equation

In the action–angle variables, the Fokker–Planck equation takes on a particularly
simple form:

df (J, t)

dt
=
∂f

∂t
+
∂H

∂θ

∂f

∂J
− ∂H

∂J

∂f

∂θ
= −

3∑
i=1

∂
[
〈∆̃Ji〉 f

]
∂Ji

+ 1
2

3∑
i ,j=1

∂2
[
〈∆̃Ji ∆Jj〉 f

]
∂Ji ∂Jj

,

where the tilded quantities denote the orbit-averaged advection and diffusion co-
efficients: 〈X̃ 〉 ≡ (2π)−3

∫
d3θ 〈X 〉.

Often it is more convenient to write down the DF and the FP equation in terms
of some other integrals of motion I, e.g., E , L or just E , and recast it in a flux-
conservative form:
∂f

∂t
= −

∑
i

∂Fi

∂Ii
, −Fi ≡ m?Ai f +

∑
j
Dij

∂f

∂Ij
.

This underlines the fact that the FP equation conserves the total mass of the DF,
only redistributing it differently across the integral space.
The coefficients A and D are related in a straightforward way to the quantites
〈X̃ 〉 defined above, and m? denotes the mass of test stars.



Orbit-averaged Fokker–Planck equation

In a multi-component system (e.g., light and heavy stars), the DF of each species
f (c) satisfies its own FP equation:

∂f (c)

∂t
= −

∑
i

∂F (c)
i

∂Ii
, −F (c)

i ≡ m(c)
? Ai f (c) +

∑
j
Dij

∂f (c)

∂Ij
.

The general derivation of coefficients A and D is given in Chapter 5 of the book
“Dynamics and evolution of galactic nuclei” [Merritt 2013]. Instead of giving explicit
expressions here, we stress the main properties of these coefficients.

Both A and D depend on I, contain integrals over DFs of all species weighted by some
functions K(I) that depend on the potential, and are shared between all species.

A(I) =
∑

c

∫
dI ′ f (c)(I ′)KA(I ′), where f (c) is the mass-normalized DF of species c

(i.e., the integral of f (c) over the entire space is the total mass of stars of this kind).
Thus A, responsible for dynamical friction, is proportional to the total mass of all stars
and doesn’t care about the stellar mass, but in the FP equation it is further multiplied
by the stellar mass of c-th species (i.e., heavier stars experience stronger friction).

D(I) =
∑

c mc

∫
dI ′ f (c)(I ′)KD(I ′), thus heavier field stars contribute more strongly

to the total diffusion (heating) rate, but all species experience the same heating.



Orbit-averaged Fokker–Planck equation

Although it’s not immediately obvious, the FP equation is also energy-conservative.
However, unlike mass conservation (which is local in the space of integrals), the
energy exchange is mediated by the coefficients A, D across the entire energy
space (non-locally). In other words, two stars with energies E1 and E2 experience
a scattering interaction and exchange a tiny bit of energy δE (in the FP approxi-
mation) and therefore shift only slightly in the energy space to E1 + δE , E2 − δE ,
but the energy was transferred over a large “gap” E2 − E1 � δE .

To study the time evolution of a stellar system un-
der two-body relaxation, the FP equation needs to
be complemented by the relation between the DF
f (I) and the density ρ(x), by the Poisson equation
linking ρ to Φ, by the expressions for the integrals
I(x, v; Φ), and by the coefficients A,D.
This system of integro-differential equations may
be solved numerically by finite differences on grids
in I, x, or by Monte Carlo methods.

FP: f (I, t)⇒
f (I, t + δt)

ρ(x) =∫
d3v f

(
I(x, v)

)
Poisson:
ρ⇒ Φ

integrals:

Φ⇒ I(x, v)

Φ, f (I)⇒
coefs A,D



Summary

I Collisional effects are “weak” if N � 1, equivalently Trel � Tdyn.

I The “classical” Chandrasekhar theory of two-body relaxation is developed
for an idealized infinite homogeneous system, but due to the long-range
nature of gravity, is logarithmically divergent at large impact parameters.
In the analogous theory for Coulomb interactions in plasma, the upper
cutoff bmax corresponds to the Debye screening radius, but in gravity, all
charges have the same sign and there is no screening.

I The Fokker–Planck approximation further neglects strong interactions
with b . b90.

I Despite obvious internal inconsistencies, this theory adequately works in
practice thanks to the (moderately) large value of the Coulomb logarithm
ln Λ ∼ O(10).
Its predictions are validated by N-body simulations and are correct at a
level of 10− 20% (after a suitable tuning of the Coulomb logarithm).

I A more rigorous kinetic theory of inhomogeneous self-gravitating systems
is considerably more complicated, both conceptually and in practice.


