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Problem 1.1: projection of ellipsoidal bodies.

(i) Consider an axisymmetric density profile ρ(r) = ρ(m), wherem ≡
√
x2 + y2 + (z/q)2

is the ellipsoidal radius, q is the axis ratio (q < 1 for oblate and q > 1 for prolate models),

and ρ(m) is an arbitrary function. Let i be the angle between the line of sight and the

z axis of the model (usually called the inclination angle for oblate models). Derive a

formula for the projected axis ratio q′ as a function of q and i for both oblate and prolate

models.

(ii) Consider now a triaxial ellipsoidal model with axis ratios p = y/x, q = z/x;

1 ≥ p ≥ q. Can it appear round in projection (q′ = 1) for any choice of p and q? If

yes, determine the orientation angles that would produce a round projection; if no, give

a counter-example.

Problem 1.2: potential of flattened systems.

(i) Consider the singular isothermal (logarithmic) potential Φ(m) = Φ0 ln(m/r0),

where m ≡
√
x2 + y2 + (z/qp)2 is the ellipsoidal radius and qp ≤ 1 is the potential axis

ratio. Determine the corresponding density profile ρ(R, z) and compute its axis ratio qd
defined by the condition ρ(R, 0) = ρ(0, qdR). In what range of qp is the resulting density

non-negative everywhere in space?

(ii) Consider a flattened power-law density profile ρ(m) = ρ0 (m/r0)
−γ with 2 < γ < 3,

where m ≡
√
x2 + y2 + (z/qd)2. In the limit of small flattening (qd → 1), compute

the corresponding potential in the spherical-harmonic approximation up to ` = 2 and

determine the axis ratio of the equipotential surfaces qp. How does it compare with the

previous result? Explain qualitatively the behaviour of the resulting expression when

γ → 3.

Note: Legendre polynomials are defined as P`(x) ≡ 1

2` `!

d`

dx`
(x2 − 1)`.

Problem 1.3: radial and azimuthal periods.

Consider a spherical power-law potential Φ(r) = Φ0 (r/r0)
2−γ

with Φ0 > 0 for 0 ≤ γ < 2 or Φ0 < 0 for 2 < γ ≤ 3. Determine

the angle ∆φ between two successive apocentres (see figure) of

a nearly-radial orbit (in the limit L → 0). Hint: consider the

cases γ > 2 and γ < 2 separately.

Determine the ratio between radial and azimuthal periods Tr/Tφ
for a nearly-radial orbit. Compare with the same ratio for a

nearly-circular orbit, using the epicyclic frequencies.

∆φ

You may use the Beta function B(a, b) =

∫ 1

0

dx xa−1 (1− x)b−1; B(a, 1− a) =
π

sin πa
.



Problem 1.4: potential and peri/apocentre radii.

(i) Show that the potential of a spherical system with non-negative density is mono-

tonic with radius. Does this hold in a more general geometry? If not, provide a counter-

example.

(ii) Write down the equation defining the turning points (pericentre and apocentre

radii) in a spherical potential generated by a non-negative density distribution, and prove

that it may have at most two solutions. Hint: use a substitution u = 1/r.
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Problem 2.1: action in a generic 1d potential.

Consider a one-dimensional system described by a Hamiltonian H(x, v) = Φ(x) + 1
2
v2,

where Φ(x) is an arbitrary potential that is monotonic in x for x ≥ 0, symmetric

w.r.t. change of sign of x and is zero at origin. The motion is confined in the inter-

val −xmax(E)..xmax(E), where xmax is the inverse function for the potential. Since the

Hamiltonian is an even function of both x and v, we can compute the action by integrating

over one quadrant:

J =
2

π

∫ xmax(E)

0

dx
√

2
[
E − Φ(x)

]
.

There is a one-to-one correspondence between J and E.

(i) Now imagine that you know H(J). Determine the potential Φ(x).

Hint: use the Abel integral inversion to determine xmax as a function of energy, then the

potential is the inverse function x−1max(Φ).

(ii) Verify the derivation for the case of simple harmonic oscillator.

(iii) Determine the potential for the case H(J) = c J4/3.

You may use the Beta function B(a, b) =

∫ 1

0

dx xa−1 (1− x)b−1; B(a, 1− a) =
π

sin πa
.

Problem 2.2: stellar distribution around a massive black hole.

Galactic nuclei often contain central supermassive black holes, which dominate the

gravitational potential in their vicinity. Consider a stellar cluster with a power-law density

profile ρ = ρ0 (r/r0)
−γ in the spatial region where the potential is Φ(r) = −GM•/r (i.e.,

at radii where the enclosed stellar mass is much smaller than M•).

(i) Determine the isotropic DF f(E) that generates the required density profile. For

which values of γ is such a DF possible?

(ii) Consider a spherical DF of the form f(E,L) = f0 L
−2β |E|n. Show that it produces

the required density profile for a suitable combination of β and n; find the range of values

for which it is possible. Compute the radial and tangential velocity dispersions and show

that the velocity anisotropy coefficient is β.

(iii) Solve the spherical Jeans equation with a constant anisotropy coefficient β for

the given density and potential and determine the radial velocity dispersion. Compare it

with the result of the previous calculation. What is the permitted range of γ and β in

the Jeans solution? Does it differ from the DF-based result, and if yes, why?

Problem 2.3: vertically isothermal disc profile.

The vertical structure of a thin stellar disc can be studied in a one-dimensional approx-

imation (neglecting the radial gradients), writing the density and potential as functions

of z. Consider an isothermal DF of stars

f(z, vz) =
ρ0√
2π σ

exp(−Ez/σ2), where Ez = Φ(z) + v2z/2.



(i) Show that the gravitational potential of the form Φ(z) = Φ0 ln cosh(z/h) and the

corresponding density are consistent with this DF for a suitably chosen normalization Φ0

and scale height h; determine Φ0 and h.

(ii) Compute the surface density of this model and the fraction of stars with |z| > h.

Problem 2.4: two-integral axisymmetric model for a flattened logarithmic potential.

Consider the flattened logarithmic potential model (same as in Problem 1.2):

Φ(R, z) = Φ0 ln(m/r0), m ≡
√
R2 + (z/q)2.

(i) Write down the corresponding density profile and the circular velocity in the z = 0

plane.

(ii) Show that this potential–density pair can be produced by a very simple two-integral

DF of the form

f(E,Lz) = A exp(−2E/Φ0) +B L2
z exp(−4E/Φ0),

determine the constants A and B.

(iii) Compute the second moments of velocity in cylindrical coordinates v2R,z,φ and

show that two of them are equal.
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Problem 3.1: dynamical friction in the Fornax dwarf galaxy.

Fornax dSph is one of the most massive Milky Way satellites, and contains an unusually

high number of globular clusters for its luminosity (6). Despite being formed more than

10 Gyr ago, they escaped the fate of sinking to the galaxy centre via dynamical friction.

This places interesting constraints on the mass distribution in the galaxy: namely, several

studies argued that it could not have a cusped density profile, otherwise the dynamical

friction would be too efficient.

(i) Consider a singular isothermal sphere profile ρ = ρ0 (r/r0)
−2. Derive the corre-

sponding circular velocity vcirc, and from the spherical isotropic Jeans equation determine

the 1d velocity dispersion σ.

The observed line-of-sight velocity dispersion in Fornax is ∼ 12 km/s. Assuming that

the [total] density profile follows the singular isothermal law, compute the density ρ0 at

r0 = 1 kpc.

(ii) Using the Chandrasekhar dynamical friction formula,

dv

dt
= −4π G2M ρ ln Λ

v2

[
erf(X)− 2X√

π
exp(−X2)

]
, X ≡ v/(

√
2σ),

determine the evolution of the radius of a circular orbit in a singular isothermal potential

as a function of time.

Hint: the friction force reduces energy and angular momentum, but the orbit remains

circular – we may write the angular momentum loss dLcirc/dt as r dv/dt, then put in

the dynamical friction acceleration, and then reinterpret the decay rate as d(rcirc vcirc)/dt.

With the previously derived expression for vcirc, this translates to the time derivative of

the radius of the orbit. Solve the resulting ODE and find the sinking time.

Compute the sinking time for a M = 2 × 105M� globular cluster in the Fornax galaxy,

assuming that it started at a radius 1 kpc and using the Coulomb logarithm ln Λ = 5.

The expression in square brackets evaluates to 0.20, 0.43, 0.74, 0.95 for X = 1/
√

2, 1,
√

2,

2, and is ∝ X3 for small X.

(iii) How would the result change (qualitatively) if the Fornax galaxy instead had a

constant-density core? Although the mass distribution in this case is somewhat more

difficult to determine (one needs to put a finite outer cutoff radius, otherwise a physically

valid solution does not exist), in the first approximation one may assume that the density

at 1 kpc and the velocity dispersion are the same as in the cuspy (singular isothermal)

case and remain constant at smaller radii.

Problem 3.2: rate of stellar encounters and their effect on planetary systems.

Consider a population of Solar-mass stars with a number density n and 1d velocity

dispersion σ. Determine the rate of encounters ν(rmin) as a function of the distance of

closest approach rmin, in the regime of weak or strong gravitational focusing.

Estimate the distance of the closest approach with another star that the Solar system



might have had in the past 4.5 Gyr, assuming the density and velocity dispersion of stars

in the Solar neighbourhood to be n ' 0.05 pc−3, σ = 25 km/s. Is the closest approach

likely to be in the regime of strong focusing? How does rmin compare with the sizes of

planetary orbits? The semimajor axis of Pluto is 39 AU, Sedna (one of the most distant

dwarf planets beyond Neptune) and the hypothetical Planet Nine have semimajor axes

∼ 500 AU. 1 AU = π/(180 ∗ 60 ∗ 60) ≈ 5× 10−6 pc.

Repeat the calculation for a star in the core of a dense globular cluster (n ' 105 pc−3,

σ = 10 km/s). Should we expect to find Earth-like planets in the habitability zone in

globular clusters?

Problem 3.3: relaxation time in the Milky Way nucleus.

The density profile of the Milky Way nuclear star cluster is ρ(r) ≈ ρ0 (r/r0)
−γ with

r0 = 1 pc, ρ0 = 105M�/pc3, and γ = 3/2.

(i) Determine the radius of influence of the supermassive black hole with mass M• ≈
4 × 106M� (defined as the radius containing the stellar mass comparable to M•, or

equivalently, the radius within which the gravitational force is dominated by the black

hole).

(ii) Using the results of Problem 2.2, determine the 1d velocity dispersion as a function

of radius inside the region of influence, assuming isotropic velocity distribution. Hint:

despite the caveats of Jeans equations, one may them in this case, since the density

profile is steeper than the limiting value γmin = 1/2 for the isotropic distribution function.

(iii) Compute the relaxation time, assuming a stellar population composed of 1M�
stars and a Coulomb logarithm ln Λ = 10. Should we expect the system to be in thermo-

dynamical equilibrium and have isotropic velocity distribution?

Problem 3.4 Gravitational slingshot.

In a famous sci-fi musical co-written by a Cambridge astronomy student, a starship

travels from Earth to a nearby star with velocity v � c (say, v = 104 km/s, although

the actual value is not mentioned in the story). However, due to unexpected technical

problems, it has to turn back after 15 years in space and needs to return to Earth in only

5 years. It performs a slingshot maneuvre around a neutron star (which just happened to

be in the right place at the right time) to achieve this goal.

(i) Is it possible that the return time is 3× shorter than the duration of the outward

journey? If yes, what are the additional circumstances and conditions?

(ii) How close to the neutron star does it need to fly to achieve the goal? Would the

crew survive the G force (assuming that a trained astronaut can withstand 10g)? How

about the tidal forces?


