
Theoretical foundations of stellar dynamics:
potentials, orbits, actions

Eugene Vasiliev

Institute of Astronomy, Cambridge

45th Heidelberg Physics Graduate Days, October 2020



Gravitational potential

∇2Φ = 4π G ρ (in Newtonian gravity)

In galactic dynamics:

I neglect relativity;

I neglect cosmological expansion;

I Φ is negative and tends to zero at infinity.



Potential and density
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Stellar orbits

Fundamental concepts of Hamiltonian mechanics:

Hamiltonian H(q,p),
where q are generalized coordinates, p are generalized momenta.

Equations of motion:

q̇ = ∂H/∂p,

ṗ = −∂H/∂q.

In the simplest case, q would be Cartesian coordinates x ≡ {x , y , z},
and p – corresponding velocity components v ≡ {vx , vy , vz}.

H(x, v) = Φ(x) + 1
2
|v|2.



Stellar orbits – 1d

Simplest possible Hamiltonian system with bound motion:

harmonic oscillator: H(x , v) = 1
2
Ω2 x2 + 1

2
v 2.

Not a totally idealized case:

Φ(x) ∝ x2 =⇒ ρ(x) ∝ d2Φ

dx2
∝ const.

Constant-density cores are commonly encountered in many stellar systems.



Stellar orbits – 2d (planar motion)

Next-simplest case: Keplerian motion



Stellar orbits – 2d (planar motion)

In a general spherically-symmetric potential,

orbits are not closed and form rosette figures



Stellar orbits – 2d (planar motion)

In a non-axisymmetric potential,

these rosettes (tube orbits) are squashed



Stellar orbits – 2d (planar motion)

Harmonic potential with incommensurable frequencies:

Φ(x , y) = 1
2
Ω2

x x
2 + 1

2
Ω2

y y
2 =⇒ box orbit



Stellar orbits – 2d (planar motion)

still a (deformed) box orbit



Stellar orbits – 2d (planar motion)

chaotic orbit – a crossover

between box and tube



Stellar orbits – 2d (planar motion)
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Stellar orbits – 3d
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(note that the variety of orbits in 3d is
much larger than in 2d, but the main
classes are the same – box, tube, various
resonant families and chaotic orbits)



Stellar orbits and integrals of motion

How large is the variety of orbits?
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Stellar orbits and integrals of motion

How large is the variety of orbits?
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In general, regular orbits in typical stationary galac-
tic potentials conserve 3 integrals of motion: one is
always the energy E , and at a fixed energy, there are
two more degrees of freedom (roughly corresponding
to eccentricity and inclination).

The spherical case is degenerate in that it supports 4
integrals of motion (E and three components of the
angular momentum L).

In the axisymmetric case, the second integral is Lz ,
but the third integral I3 (if exists), does not have an
explicit expression (except in a special class of fully inte-

grable potentials known as Stäckel potentials).

Not all orbits have the same number of integrals, and
the physical meaning of these integrals is different be-
tween orbit families.



The holy grail of Hamiltonian mechanics

What is the simplest possible Hamiltonian system?

A free particle!

H(q,p) = 1
2
|p|2 =⇒ pi(t) = const, qi(t) = pi t + const

Unfortunately, it corresponds to an unbound motion,
unlike [most] stars in galaxies.

The next simplest (and more realistic) thing? Periodic motion:

H(q,p) = H(p) =⇒ pi(t) = const, qi(t) =
∂H

∂pi
t + const ≡ Ω t + const,

where q are treated as angle-like (periodic) variables, q + 2π ∼= q,
and p are integrals of motion.

These are action–angle variables



Action–angle variables for a 1d simple harmonic oscillator

Hamiltonian: H(q, p) = 1
2
p2 + 1

2
ω2 q2.

The trajectory is q(t) = A sin(ωt + φ0), p(t) = Aω cos(ωt + φ0),
and the energy is E = 1

2
ω2 A2.

The motion is periodic with frequency ω (⇔ period 2π/ω),
so we define the angle θ = ωt + φ0.

The action J is 1
2π
×area enclosed by the trajectory:

J =
1

2π

∮
p dq

=
1

2π

∫ 2π

0

p(θ)
dq

dθ
dθ

=
1

2π

∫ 2π

0

A2ω cos2 θ dθ

=
A2ω

2
=

E

ω

q

p

A

ωA
θ



Action–angle variables for a generic 1d potential

For a generic 1d Hamiltonian

H(p, q) = 1
2
p2 + Φ(q),

the action is still defined as

J =
1

2π

∮
p dq =

2

π

∫ Φ−1(E)

0

√
2
[
E − Φ(q)

]
dq,

and the frequency Ω ≡ dH

dJ
usually varies with energy.
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Action–angle variables for a 2d simple harmonic oscillator

The same thing but in two dimensions: q = {x , y}, p = {px , py};
Hamiltonian:

H(q,p) =
1

2

(
p2
x + ω2

x x
2
)

+
1

2

(
p2
y + ω2

y y
2
)

≡ Hx(x , px) + Hy (y , py )

Motion is separable in x , y –
two uncoupled simple harmonic oscillators,
two integrals of motion Ex ,Ey ,
actions are Jx = Ex/ωx , Jy = Ey/ωy .

-1 -0.5 0 0.5 1

x

-0.6

-0.4

-0.2

0

0.2

0.4

y

0.0

0.1

0.2

0.3

0.4

0.5

Φ
(x

)

0.1 0.3 0.5

Φ(y)



Action–angle variables for a 2d planar axisymmetric potential
A slightly more complicated system: two degrees of freedom, motion in
an axisymmetric potential Φ(x , y) = Φ(R), where R ≡

√
x2 + y 2.

Canonical coordinates: q = {R , φ},p = {pR , pφ}

Hamiltonian: H = Φ(R) +
1

2

(
p2
R +

p2
φ

R2

)
≡ Φeff(R) +

1

2
p2
R

equations of motion: Ṙ = pR , φ̇ =
pφ
R2
, ṗR = −dΦeff

dR
, ṗφ = 0

integrals of motion: E and pφ

Motion in R is described by a 1d
effective potential Φeff(R) ≡ Φ(R) + p2

φ/R
2

The radial action is

JR =
1

π

∫ R+

R−

pR(R ; E , pφ) dR

=
1

π

∫ R+

R−

√
2
[
(E − Φeff(R)

]
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Action–angle variables for a 2d planar axisymmetric potential

Motion in φ: ṗφ = 0 ⇒ pφ = const,

hence the azimuthal action is

Jφ =
1

2π

∫ 2π

0

pφ dφ = pφ.

The actions JR , Jφ describe the extent of
the orbit in two complementary dimensions:

Jφ corresponds to the “guiding radius”
(the radius of a circular orbit with
the given angular momentum Jφ),

JR gives the extent of radial oscillation
about this guiding radius.

They can be varied independently, and
any possible choice (provided that JR ≥ 0)

corresponds to some trajectory. 1.0 0.5 0.0 0.5 1.0
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Angles and frequencies

Note that φ̇ = pφ/R
2(t) 6= const, so φ is not a canonically conjugate angle

variable to pφ!

Such variable is θφ defined to increase linearly with time,
and similarly the radial phase angle θR also increases linearly with time:

θR = ΩR t, θφ = Ωφ t, where

ΩR ≡
∂H(JR , Jφ)

∂JR
, Ωφ ≡

∂H(JR , Jφ)

∂Jφ
are orbital frequencies.

θR(R ; E , pφ) = ΩR

∫ R

R−

dt

dR
dR = ΩR

∫ R

R−

dR

pR(R ; E , pφ)

Radial orbital period TR ≡
2π

ΩR
= 2

∫ R+

R−

dR

pR
= 2

∫ R+

R−

dR√
2
[
E − Φ(R)

]
− p2

φ

R2

Azimuthal period Tφ ≡
2π

Ωφ

=
2π
∫ R+

R−
dR/pR

pφ
∫ R+

R−
dR/(R2 pR)



Action–angle variables for a 3d spherical potential

Spherical coordinates: r , θ, φ, pr , pθ, pφ

Hamiltonian: H = Φ(r) +
1

2

(
p2
r +

p2
θ

r 2
+

p2
φ

r 2 sin2 θ

)
Integrals of motion: E , Lx , Ly , Lz

[
, L ≡

√
L2
x + L2

y + L2
z

]
Radial action: Jr =

1

π

∫ r+

r−

√
2
[
E − Φ(r)

]
− L2

r 2
dr ≥ 0

Azimuthal action: Jφ = Lz (any sign)

Vertical action: Jθ ≡ Jz = L− |Lz | ≥ 0

In general, actions, angles, frequencies, or H(J) do not have analytic
expressions. One exception is the isochrone potential [Hénon 1959]:

Φ(r) = − G M

b +
√
b2 + r 2

(includes Kepler and harmonic oscliiator as limiting cases)

H(J) = − 2 (G M)2(
2Jr + L +

√
L2 + 4G M b

)2



Action–angle variables for a 3d axisymmetric potential
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Epicyclic approximation for nearly-circular
orbits close to the equatorial plane:

Φ(R , z) ≈ ΦR(R) + Φz(z),

motion in R , φ as in the planar axisymmetric
problem with an effective potential
Φeff = ΦR(R) + 1

2
L2/r 2,

and independent, nearly harmonic motion in z .

Epicyclic frequencies:

azimuthal: Ω = v◦(R)
R

=
√

1
R
∂Φ
∂R

,

radial: κ =
√

∂2Φeff

∂R2 =
√

∂2Φ
∂R2 + 3

R
∂Φ
∂R

vertical: ν =
√

∂2Φ
∂z2 .

However, it becomes increasingly inaccurate for orbits
with high eccentricity and/or inclination.



Stäckel fudge

Fact: orbits in realistic axisymmetric galactic potentials are much better
aligned with prolate spheroidal coordinates.

One may explore the assumption that the motion is separable in these
coordinates (λ, ν).
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Stäckel fudge

Fact: orbits in realistic axisymmetric galactic potentials are much better
aligned with prolate spheroidal coordinates.

One may explore the assumption that the motion is separable in these
coordinates (λ, ν).
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Stäckel fudge
The most general form of potential that satisfies the separability condition

is the Stäckel potential1: Φ(λ, ν) = − f1(λ)− f2(ν)

λ− ν
.

The motion in λ and ν directions, with canonical momenta pλ, pν ,
is governed by two separate equations:

2(λ−∆2)λ p2
λ =

[
E − L2

z

2(λ−∆2)

]
λ− [I3 + (λ− ν)Φ(λ, ν)],

2(ν −∆2) ν p2
ν =

[
E − L2

z

2(ν −∆2)

]
ν − [I3 + (ν − λ)Φ(λ, ν)].

Under the approximation that the separation constant I3 is indeed
conserved along the orbit, actions are computed as

Jλ =
1

π

∫ λmax

λmin

pλ dλ, Jν =
1

π

∫ νmax

νmin

pν dν.

1Note that the potential of the Perfect Ellipsoid [de Zeeuw 1985] is of the Stäckel
form, but it is only one example of a much wider class of potentials.



Stäckel fudge

If one pretends that the actual galactic potential is of the Stäckel form,
these expressions provide a good approximation to the true actions
[Binney 2012], with a typical accuracy ∼ 1− 10%.

This approach works reasonably well for most realistic axisymmetric
galactic potentials, except when the orbit is a resonant one.

An alternative approach is based on the concept of canonical
transformation, approximating the real actions with a convergent
Fourier series [Sanders&Binney 2014; Bovy 2014], also known as torus mapping
[McGill&Binney 1990; Kaasalainen 1994; McMillan&Binney 2008].
See Sanders&Binney 2016 for a general review.



Invariant tori

θ1

θ2

q

p
θJ

In an integrable potential, the motion is

multiperiodic in angles: θi + 2π ∼= θi ,

restricted to a D-dimensional hypersurface
of the 2D-dimensional phase space.

Arnold–Liouville theorem:
this hypersurface is diffeomorphic to
(i.e., could be smoothly deformed into) a D-torus,
parametrized by D periodic variables
θ ∈ [0..2π).

The entire 6d phase space is foliated into
non-intersecting 3d orbital tori.

Actions tell you which orbit the star is on,
angles – where it is located on this orbit.



Invariant tori and phase mixing

Since the frequencies Ω ≡ ∂H

∂J
6= const,

an initially localized ensemble of points
eventually spreads out in angles (mixes
in orbital phase) and fills the entire torus.

Thus in the time-averaged sense, only ac-
tions are important, and the distribution
in angles is assumed to be uniform.

For chaotic orbits, the mixing is even
more efficient.

However, at early stages of evolution
(e.g., of a recently disrupted star cluster),
the angle distribution is not yet mixed.
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Fun facts / rules of thumb about actions
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I Dimension of actions is length×velocity:
if a star at a galactocentric distance r travels with

velocity v , then [at least one of the actions] J ∼ r v .

I Frequencies: Ωi(J) = ∂H/∂Ji
characteristic velocity vi ∼

√
Ωi Ji

e.g., for a circular orbit Jφ = R vφ, Ωφ = vφ/R.

I Surfaces of constant energy H(J) = E are
approximately tetrahedra in the 3d action space,

with E ≈ E (Ωr Jr + Ωz Jz + Ωφ Jφ).



Advantages of action/angle variables

I Clear physical meaning (describe the extent of oscillations in each dimension).

I Most natural description of motion (angles change linearly with time).

I Possible range for each action variable is [0..∞) or (−∞..∞),
independently of the other ones (unlike E and L, say).

I Canonical coordinates ⇒ the 6d phase-space volume element is
d3x d3v = d3J d3θ.

I Actions are adiabatic invariants (are conserved under slow variation of potential).

I Perturbation theory most naturally formulated in terms of actions.

I Efficient methods for conversion between {x, v} and {J,θ} now exist.


