Action-angle variables in galactic dynamics

Eugene Vasiliev

Institute of Astronomy, Cambridge

Summer School on Galactic Dynamics, Shanghai, June 2019

Hamiltonian mechanics

Consider a particle moving in a potential $\Phi(\mathbf{x})$.

 $\mathbf{x}(t), \mathbf{v}(t)$ are "ordinary" *D*-dimensional position/velocity coordinates; $H(\mathbf{x}, \mathbf{v}) = \Phi(\mathbf{x}) + \frac{1}{2} |\mathbf{v}|^2$ is the Hamiltonian.

The equations of motion are

$$\frac{d\mathbf{x}}{dt} \equiv \dot{\mathbf{x}} = \mathbf{v}, \quad \frac{d\mathbf{v}}{dt} \equiv \dot{\mathbf{v}} = -\frac{\partial\Phi}{\partial\mathbf{x}}$$

One may consider a general class of Hamiltonian systems defined by $H(\mathbf{q}, \mathbf{p})$ as a function of generalized phase-space coordinates, which satisfy the Hamilton's equations of motion:

$$\dot{\mathbf{q}} = \frac{\partial H}{\partial \mathbf{p}}, \qquad \dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{q}}$$

Poisson brackets

Define the commutator operator for two functions of phase-space coordinates $A(\mathbf{q}, \mathbf{p})$ and $B(\mathbf{q}, \mathbf{p})$ as

$$[A, B] \equiv \frac{\partial A}{\partial \mathbf{q}} \frac{\partial B}{\partial \mathbf{p}} - \frac{\partial A}{\partial \mathbf{p}} \frac{\partial B}{\partial \mathbf{q}}$$

It follows immediately that

$$[A, A] = 0, \quad [A, B] = -[B, A], \qquad (\text{antisymmetry})$$

$$[[A, B], C] + [[B, C], A] + [[C, A], B] = 0, \qquad (\text{Jacobi identity})$$

$$[q_i, q_j] = 0, \quad [p_i, p_j] = 0, \quad [q_i, p_j] = \delta_{ij}, \qquad i, j = 1..D,$$

and the Hamilton equations can be written as

$$\dot{q}_i = [q_i, H], \quad \dot{p}_i = [p_i, H]$$

Integrals of motion

If [A, B] = 0, we say that A commutes with B.

If a function $A(\mathbf{q}, \mathbf{p})$ commutes with the Hamiltonian, it is conserved along the particle's trajectory – we call it an integral of motion:

$$\frac{dA}{dt} = \frac{\partial A}{\partial \mathbf{q}} \frac{d\mathbf{q}}{dt} + \frac{\partial A}{\partial \mathbf{p}} \frac{d\mathbf{p}}{dt}$$
$$= \frac{\partial A}{\partial \mathbf{q}} \frac{\partial H}{\partial \mathbf{p}} - \frac{\partial A}{\partial \mathbf{p}} \frac{\partial H}{\partial \mathbf{q}}$$
$$= [A, H] = 0$$

Obviously, the Hamiltonian itself is an integral of motion.

Phase-space distribution function $f(\mathbf{q}, \mathbf{p})$ satisfies the collisionless Boltzmann equation and hence is also conserved along the trajectory of any particle.

Canonical transformations

Consider a change of variables from \mathbf{p}, \mathbf{q} to \mathbf{P}, \mathbf{Q} , and express the Hamiltonian $H(\mathbf{P}, \mathbf{Q})$ or any other function in phase space in terms of the new variables.

If the new variables satisfy the canonical commutatation relations $[Q_i, Q_j] = 0$, $[P_i, P_j] = 0$, $[Q_i, P_j] = \delta_{ij}$, such transformation is called canonical (or symplectic).

It also preserves

Hamilton's equations of motion:

 $\dot{\mathbf{Q}}_i = [Q_i, H], \ \dot{\mathbf{P}}_i = [P_i, H];$

• more generally, all Poisson brackets: $[A(\mathbf{p}, \mathbf{q}), B(\mathbf{p}, \mathbf{q})] = [A(\mathbf{P}, \mathbf{Q}), B(\mathbf{P}, \mathbf{Q})];$

► all Poincaré invariants: ∮ p · dq

> 2*D*-dimensional phase volume element: $d^D \mathbf{q} d^D \mathbf{p} = d^D \mathbf{Q} d^D \mathbf{P}$

Examples of canonical transformations

1. Exchange: $\mathbf{Q} = \mathbf{p}, \ \mathbf{P} = \mathbf{q}$

(i.e., there is no fundamental difference between coordinate and momentum variables).

2. Point transformation: define Q(q) in whatever way, and then P(q, p) is uniquely specified.

For instance, cartesian to polar coordinates: $\mathbf{q} \equiv \{x, y\}$ to $\mathbf{Q} \equiv \{r, \phi\}$ implies $\mathbf{P} \equiv \{p_r, p_{\phi}\} = \{(xp_x + yp_y)/r, xp_y - yp_x\}.$

 Hamiltonian flow: integrate the equations of motion for some time τ, and let {Q, P}(q, p; τ) be the new coordinates and momenta of a point started from initial conditions q, p.

Examples of canonical transformations

1. Exchange: $\mathbf{Q} = \mathbf{p}, \ \mathbf{P} = \mathbf{q}: \qquad F(\mathbf{q}, \mathbf{Q}) = \mathbf{q} \cdot \mathbf{Q}$

(i.e., there is no fundamental difference between coordinate and momentum variables).

2. Point transformation: define Q(q) in whatever way, and then P(q, p) is uniquely specified. $F(q, P) = Q(q) \cdot P$

For instance, cartesian to polar coordinates: $\mathbf{q} \equiv \{x, y\}$ to $\mathbf{Q} \equiv \{r, \phi\}$ implies $\mathbf{P} \equiv \{p_r, p_{\phi}\} = \{(xp_x + yp_y)/r, xp_y - yp_x\}.$

 Hamiltonian flow: integrate the equations of motion for some time τ, and let {Q, P}(q, p; τ) be the new coordinates and momenta of a point started from initial conditions q, p.

One powerful way of constructing such transformations is to introduce

a generating function $F(\mathbf{q}, \mathbf{P})$ such that $\mathbf{p} = \frac{\partial F}{\partial \mathbf{q}}$, $\mathbf{Q} = \frac{\partial F}{\partial \mathbf{P}}$;

F could also be expressed in terms of some other combination of old and new variables, e.g., $F(\mathbf{q}, \mathbf{Q})$, etc.

What is the simplest possible Hamiltonian system?

What is the simplest possible Hamiltonian system? A free particle!

$$H(\mathbf{q},\mathbf{p})=rac{1}{2}|\mathbf{p}|^2 \implies p_i(t)=\mathrm{const}, \quad q_i(t)=p_i\,t+\mathrm{const}$$

Unfortunately, it corresponds to an unbound motion, unlike [most] stars in galaxies.

What is the simplest possible Hamiltonian system? A free particle!

$$H(\mathbf{q},\mathbf{p}) = \frac{1}{2}|\mathbf{p}|^2 \implies p_i(t) = \text{const}, \quad q_i(t) = p_i t + \text{const}$$

Unfortunately, it corresponds to an unbound motion, unlike [most] stars in galaxies.

The next simplest (and more realistic) thing? Periodic motion:

What is the simplest possible Hamiltonian system? A free particle!

$$H(\mathbf{q},\mathbf{p})=rac{1}{2}|\mathbf{p}|^2 \implies p_i(t)= ext{const}, \quad q_i(t)=p_i t+ ext{const}$$

Unfortunately, it corresponds to an unbound motion, unlike [most] stars in galaxies.

The next simplest (and more realistic) thing? Periodic motion:

$$H(\mathbf{q}, \mathbf{p}) = H(\mathbf{p}) \implies p_i(t) = \text{const}, \quad q_i(t) = \frac{\partial H}{\partial p_i} t + \text{const},$$

where **q** are treated
as angle-like (periodic)
variables, $q + 2\pi \cong q$
on a *D*-dimensional torus.
These are action-angle variables q_1

Integrability and the Arnold–Liouville theorem

If I_1 and I_2 are two integrals of motion, then the Jacobi identity $[[I_1, I_2], H] + [[I_2, H], I_1] + [[H, I_1], I_2] = 0$ implies that $[I_1, I_2]$ is also an integral of motion.

(Example: $I_1 = L_x, I_2 = L_y \Rightarrow [I_1, I_2] = L_z$).

If $[I_1, I_2]$ is identically zero, the two integrals are said to be in involution.

A Hamiltonian system with D degrees of freedom is *integrable* if it has D independent integrals of motion $I_1 ldots I_D$ (including the Hamiltonian itself) which are all in involution with each other.

The motion of any particle is restricted to a D-dimensional hypersurface of the 2D-dimensional phase space.

Theorem: this hypersurface is diffeomorphic to (i.e., could be smoothly deformed into) a *D*-torus, parametrized by *D* periodic variables $\theta \in [0..2\pi)$.

Action-angle variables for a 1d simple harmonic oscillator

The simplest possible Hamiltonian system: $H(q, p) = \frac{1}{2}p^2 + \frac{1}{2}\omega^2 q^2$.

The trajectory is $q(t) = A \sin(\omega t + \phi_0)$, $p(t) = A \omega \cos(\omega t + \phi_0)$, and the energy is $E = \frac{1}{2}\omega^2 A^2$.

The motion is periodic with frequency ω (\Leftrightarrow period $2\pi/\omega$), so we define the angle $\theta = \omega t + \phi_0$.

The action J is $\frac{1}{2\pi}$ × area enclosed by the trajectory:

Action-angle variables for a 2d simple harmonic oscillator

The same thing but in two dimensions: $\mathbf{q} = \{x, y\}, \ \mathbf{p} = \{p_x, p_y\};$ Hamiltonian:

$$H(\mathbf{q}, \mathbf{p}) = \frac{1}{2} (p_x^2 + \omega_x^2 x^2) + \frac{1}{2} (p_y^2 + \omega_y^2 y^2)$$

$$\equiv H_x(x, p_x) + H_y(y, p_y)$$

Motion is separable in x, y - ttwo uncoupled simple harmonic oscillators, two integrals of motion E_x, E_y , actions are $J_x = E_x/\omega_x, J_y = E_y/\omega_y$.

Action-angle variables for a 2d planar axisymmetric potential

A slightly more complicated system: two degrees of freedom, motion in an axisymmetric potential $\Phi(x, y) = \Phi(R)$, where $R \equiv \sqrt{x^2 + y^2}$.

Canonical coordinates: $\mathbf{q} = \{R, \phi\}, \mathbf{p} = \{p_R, p_\phi\}$

Hamiltonian:
$$H = \Phi(R) + \frac{1}{2}\left(p_R^2 + \frac{p_{\phi}^2}{R^2}\right) \equiv \Phi_{\text{eff}}(R) + \frac{1}{2}p_R^2$$

equations of motion: $\dot{R} = p_R$, $\dot{\phi} = \frac{p_{\phi}}{R^2}$, $\dot{p}_R = -\frac{d\Phi_{\text{eff}}}{dR}$, $\dot{p}_{\phi} = 0$

integrals of motion: E and p_{ϕ}

Motion in R is described by a 1d effective potential $\Phi_{\rm eff}(R)\equiv \Phi(R)+p_{\phi}^2/R^2$

The radial action is

$$egin{split} J_R &= rac{1}{\pi} \int_{R_-}^{R_+} p_R(R;\,E,p_\phi)\,dR \ &= rac{1}{\pi} \int_{R_-}^{R_+} \sqrt{2ig[(E-\Phi_{
m eff}(R)ig]}\,\,dR \end{split}$$

Action-angle variables for a 2d planar axisymmetric potential

Motion in ϕ : $\dot{p}_{\phi} = 0 \Rightarrow p_{\phi} = \text{const}$,

hence the azimuthal action is

$$J_{\phi}=rac{1}{2\pi}\int_{0}^{2\pi} p_{\phi}\,d\phi=p_{\phi}.$$

The actions J_R , J_ϕ describe the extent of the orbit in two complementary dimensions:

 J_{ϕ} corresponds to the "guiding radius" (the radius of a circular orbit with the given angular momentum J_{ϕ}),

 J_R gives the extent of radial oscillation about this guiding radius.

They can be varied independently, and any possible choice (provided that $J_R \ge 0$) corresponds to some trajectory.

Angles and frequencies

Note that $\dot{\phi} = p_{\phi}/R^2(t) \neq \text{const}$, so ϕ is not a canonically conjugate angle variable to p_{ϕ} !

Such variable is θ_{ϕ} defined to increase linearly with time, and similarly the radial phase angle θ_R also increases linearly with time:

 $\theta_R = \Omega_R t, \quad \theta_\phi = \Omega_\phi t, \text{ where }$ $\Omega_R \equiv \frac{\partial H(J_R, J_{\phi})}{\partial J_{\Sigma}}, \quad \Omega_{\phi} \equiv \frac{\partial H(J_R, J_{\phi})}{\partial L} \quad \text{are orbital frequencies.}$ $\theta_R(R; E, p_\phi) = \Omega_R \int_{R}^{R} \frac{dt}{dR} dR = \Omega_R \int_{R}^{R} \frac{dR}{p_R(R; E, p_\phi)}$ Radial orbital period $T_R \equiv \frac{2\pi}{\Omega_R} = 2 \int_{R_-}^{R_+} \frac{dR}{p_R} = 2 \int_{R_-}^{R_+} \frac{dR}{\sqrt{2[E - \Phi(R)] - \frac{p_{\phi}^2}{R^2}}}$ Azimuthal period $T_{\phi} \equiv \frac{2\pi}{\Omega_{\phi}} = \frac{2\pi}{p_{\phi}} \int_{\Gamma_{e}}^{R_{+}} dR/p_{R}}{p_{\phi}}$

Action-angle variables for a 3d spherical potential

Spherical coordinates: $r, \theta, \phi, p_r, p_{\theta}, p_{\phi}$

Hamiltonian:
$$H = \Phi(r) + \frac{1}{2} \left(p_r^2 + \frac{p_\theta^2}{r^2} + \frac{p_\phi^2}{r^2 \sin^2 \theta} \right)$$

Integrals of motion: $E, L_x, L_y, L_z \left[, L \equiv \sqrt{L_x^2 + L_y^2 + L_z^2}\right]$

Radial action:
$$J_r = \frac{1}{\pi} \int_{r_-}^{r_+} \sqrt{2[E - \Phi(r)] - \frac{L^2}{r^2}} \ge 0$$

Azimuthal action: $J_{\phi} = L_z$ (any sign)

Vertical action: $J_{\theta} \equiv J_z = L - |L_z| \ge 0$

In general, actions, angles, frequencies, or $H(\mathbf{J})$ do not have analytic expressions. One exception is the isochrone potential [Hénon 1959]:

$$\Phi(r) = -\frac{G M}{b + \sqrt{b^2 + r^2}} \quad \text{(includes Kepler and harmonic osclilator as limiting cases)}$$
$$H(\mathbf{J}) = -\frac{2 (G M)^2}{\left(2J_r + L + \sqrt{L^2 + 4 G M b}\right)^2}$$

Action-angle variables for a 3d axisymmetric potential

For nearly-circular orbits close to the equatorial plane, one may use the **epicyclic approximation**:

 $\Phi(R,z) \approx \Phi_R(R) + \Phi_z(z)$,

motion in R, ϕ as in the planar axisymmetric problem with effective potential $\Phi_{\text{eff}} = \Phi_R(R) + \frac{1}{2}L^2/r^2$, and independent, nearly harmonic motion in z.

However, it becomes increasingly inaccurate for orbits with high eccentricity and/or inclination.

State of the art: Stäckel fudge

Fact: orbits in realistic axisymmetric galactic potentials are much better aligned with prolate spheroidal coordinates.

State of the art: Stäckel fudge

Fact: orbits in realistic axisymmetric galactic potentials are much better aligned with prolate spheroidal coordinates.

One may explore the assumption that the motion is separable in these coordinates (λ, ν) .

Stäckel fudge [Binney 2012]

The most general form of potential that satisfies the separability condition is the Stäckel potential¹: $\Phi(\lambda, \nu) = -\frac{f_1(\lambda) - f_2(\nu)}{\lambda - \nu}$.

The motion in λ and ν directions, with canonical momenta p_{λ}, p_{ν} , is governed by two separate equations:

$$2(\lambda - \Delta^2) \lambda p_{\lambda}^2 = \left[E - \frac{L_z^2}{2(\lambda - \Delta^2)} \right] \lambda - [I_3 + (\lambda - \nu)\Phi(\lambda, \nu)],$$

$$2(\nu - \Delta^2) \nu p_{\nu}^2 = \left[E - \frac{L_z^2}{2(\nu - \Delta^2)} \right] \nu - [I_3 + (\nu - \lambda)\Phi(\lambda, \nu)].$$

Under the approximation that the separation constant I_3 is indeed conserved along the orbit, actions are computed as

$$J_{\lambda} = rac{1}{\pi} \int_{\lambda_{\min}}^{\lambda_{\max}} p_{\lambda} \, d\lambda, \quad J_{
u} = rac{1}{\pi} \int_{
u_{\min}}^{
u_{\max}} p_{
u} \, d
u.$$

¹Note that the potential of the Perfect Ellipsoid [de Zeeuw 1985] is of the Stäckel form, but it is only one example of a much wider class of potentials.

Stäckel fudge in practice

A rather flexible approximation: for each orbit, we have the freedom of using two functions $f_1(\lambda)$, $f_2(\nu)$ (directly evaluated from the actual potential $\Phi(R, z)$) to describe the motion in two independent directions. These functions are different for each orbit (implicitly depend on E, L_z, I_3). Moreover, we may choose the focal distance Δ of the auxiliary prolate spheroidal coordinate system for each orbit independently.

Accuracy of the Stäckel fudge

Accuracy of action conservation using the Stäckel fudge: $\leq 1\%$ for most disk orbits, $\leq 10\%$ even for high-eccentricity orbits [except near resonances!]. Interpolation of J_r , J_z on a 3d grid of E, L_z , I_3 : 10x speed-up at the expense of a moderate [not always acceptable!] decrease in accuracy.

Other methods for action computation

The accuracy of the Stäckel approximation is "uncontrollable" (cannot be systematically improved), and it is mainly used in axisymmetric potentials.

However, actions offer the only **systematic** method for computing the integrals of motion in a **non-perturbative** way for an arbitrary potential:

Introduce a simple enough "toy" potential Φ^t (e.g., isochrone), for which the mapping between position–velocity {x, v} and action–angle {J^t, θ^t} coordinates is known analytically.

We seek a canonical transformation between the true (yet unknown) {J, θ} and the "toy" {J^t, θ^t}. This transformation is described by a generating function S(J, θ^t), which can be expanded into Fourier series in θ^t: S(J, θ^t) = J ⋅ θ^t + ∑_n S_n(J) exp(in ⋅ θ^t), where n are triplets of integers.

- Choose the Fourier coefficients S_n up to some maximum order n to approximate the true Hamiltonian to any desired accuracy.
- The transformation is given by $\mathbf{J}^t = \partial S / \partial \boldsymbol{\theta}^t$, $\boldsymbol{\theta} = \partial S / \partial \mathbf{J}$.

Other methods for action computation

There are several variants of these methods, but we won't go into details.

- First numerically integrate the orbit, then obtain the coefficients S_n to minimize the variation of the toy Hamiltonian across the real orbit [Sanders & Binney 2014; Bovy 2014]. This gives the transformation from {x, v} to {J, θ}.
- Reverse transformation (torus mapping) allows one to compute the position/velocity from action/angle without the need to integrate an orbit [McGill & Binney 1990; McMillan & Binney 2008].

 A variation of this approach also works for resonantly-trapped orbits [Kaasalainen 1994; Binney 2016, 2018].

Advantages of action/angle variables

- Clear physical meaning (describe the extent of oscillations in each dimension).
- Most natural description of motion (angles change linearly with time).
- Possible range for each action variable is [0..∞) or (-∞..∞), independently of the other ones (unlike *E* and *L*, say).
- Canonical coordinates \Rightarrow the 6d phase-space volume element is $d^3x \ d^3v = d^3J \ d^3\theta$.
- Actions are adiabatic invariants (are conserved under slow variation of potential).
- Perturbation theory most naturally formulated in terms of actions.
- Efficient methods for conversion between $\{x, v\}$ and $\{J, \theta\}$ now exist.

Fun facts / rules of thumb about actions

- Dimension of actions is length×velocity: if a star at a galactocentric distance r travels with velocity v, then [at least one of the actions] J ~ r v.
- Frequencies: Ω_i(J) = ∂H/∂J_i characteristic velocity v_i ~ √Ω_i J_i e.g., for a circular orbit J_φ = R v_φ, Ω_φ = v_φ/R.
- Surfaces of constant energy $H(\mathbf{J}) = E$ are approximately tetrahedra in the 3d action space, with $E \approx E(\Omega_r J_r + \Omega_z J_z + \Omega_\phi J_\phi)$.

pola

retrograde

prod

rade

Natural coordinates to describe orbits

- The entire 6d phase space is foliated into non-intersecting 3d orbital tori.
- Actions tell you which orbit the star is on, angles – where it is located on this orbit.
- Angles change linearly with time, $\theta_i = \Omega_i t$
- ► Torus construction provides the transformation
 J, θ → x, v, i.e., one can find the position-velocity at any time without the need to integrate the orbit.
- In a time-averaged sense, only actions are significant (distribution of stars is averaged over angles – phase mixed);

however, for an initially localized ensemble of stars (e.g., a stream from a disrupted cluster), the distribution over angles is not uniform.

- **1.** Numerically integrate the trajectory: $x(t), y(t), p_x(t), p_y(t)$.
- 2. Every time it passes through the axis y = 0 with $\dot{y} > 0$, put a point on the x, p_x plane.

- **1.** Numerically integrate the trajectory: $x(t), y(t), p_x(t), p_y(t)$.
- 2. Every time it passes through the axis y = 0 with $\dot{y} > 0$, put a point on the x, p_x plane.

- **1.** Numerically integrate the trajectory: $x(t), y(t), p_x(t), p_y(t)$.
- 2. Every time it passes through the axis y = 0 with $\dot{y} > 0$, put a point on the x, p_x plane.

- **1.** Numerically integrate the trajectory: $x(t), y(t), p_x(t), p_y(t)$.
- 2. Every time it passes through the axis y = 0 with $\dot{y} > 0$, put a point on the x, p_x plane.

- **1.** Numerically integrate the trajectory: $x(t), y(t), p_x(t), p_y(t)$.
- 2. Every time it passes through the axis y = 0 with $\dot{y} > 0$, put a point on the x, p_x plane.

- 3. Each orbit corresponds to a closed loop in this plane.
- **4.** Repeat for many different initial conditions to get the "phase portrait" of the Hamiltonian.

- 3. Each orbit corresponds to a closed loop in this plane.
- **5.** The action of an orbit is just the area inside its Poincaré curve: $J_x = \frac{1}{2\pi} \oint p_x \, dx$

A convenient tool for analyzing orbits in 2d Hamiltonian systems at a fixed E (e.g., motion in the equatorial plane, or in the meridional plane of an axisymmetric potential at a fixed L_z)

6. Now repeat this exercise for a different choice of energy E

- 7. This portrait may contain more than one orbit family!
- 8. The meaning of actions is different for each orbit family (e.g., it is J_x for a box orbit, and J_r for a loop orbit)

- 7. This portrait may contain more than one orbit family!
- 9. For high-order resonances the action *may* describe the width around parent orbit, and for chaotic orbits the actions are not defined at all..

Action-angles are canonical coordinates

A distribution function (DF) in phase space $f(\mathbf{x}, \mathbf{v})$ can be expressed in any other coordinates, e.g., f(E, L) or $f(\mathbf{J}, \theta)$.

In a phase-mixed system, it is independent of θ .

The mass in a given volume of phase space is $\int f(\mathbf{x}, \mathbf{v}) d^3x d^3v = \int f(\mathbf{J}, \theta) d^3J d^3\theta = (2\pi)^3 \int f(\mathbf{J}) d^3J - does not depend on the potential and has no extra multiplicative factors! (e.g., compared to <math>\int f(E, L) 4\pi^2 T(E, L; \Phi) dL^2$ for a conventional DF).

The functional form of the DF is independent of the potential Φ , but the correspondence between **x**, **v** and **J**, θ , of course, does depend on Φ .

Adiabatic invariance of actions

Actions are conserved under slow variations of potential ($\Omega \tau \gg 1$).

Examples:

- accreted satellite galaxies should stay localized in the action space;
- compression of the dark halo after the formation of the stellar disk:

Perturbation theory in action space

$$\begin{split} f(\mathbf{J}, \boldsymbol{\theta}, t) &= f_0(\mathbf{J}) + \epsilon f_1(\mathbf{J}, \boldsymbol{\theta}, t), \\ H(\mathbf{J}, \boldsymbol{\theta}, t) &= H_0(\mathbf{J}) + \epsilon H_1(\mathbf{J}, \boldsymbol{\theta}, t) = H(\mathbf{x}, \mathbf{v}, t) \equiv \Phi_0(\mathbf{x}) + \epsilon \Phi_1(\mathbf{x}, t) + \frac{1}{2}v^2. \\ \text{Linearized Vlasov / collisionless Boltzmann equation:} \end{split}$$

$$0 = \frac{\partial f}{\partial t} + \left[H, f\right] \approx \frac{\partial f_1}{\partial t} + \frac{\partial f_1}{\partial \theta} \frac{\partial H_0}{\partial J} - \frac{\partial f_0}{\partial J} \frac{\partial \Phi_1}{\partial \theta}.$$

 $\Phi_1(\mathbf{x}, t)$ is the external perturbation augmented with internal self-gravity (diverges at resonances!).

For the given f_0 and Φ_1 , one may compute the perturbed DF $f_1(\mathbf{J}, \boldsymbol{\theta}, t)$ [e.g., Monari+ 2016–2018] is possible.

Distribution functions

The pair $f(\mathbf{J})$, $\Phi(\mathbf{x})$ provides the complete description of the system:

Φ determines the transformation {x, v} ↔ {J, θ};
density is ρ(x) = ∫ f [J(x, v; Φ)] d³v;

► velocity moments are
$$\overline{\mathbf{v}} = \frac{1}{\rho} \int f[\mathbf{J}(\mathbf{x}, \mathbf{v}; \Phi)] \mathbf{v} d^3 v;$$

 $\overline{v_i v_j} = \frac{1}{\rho} \int f[\mathbf{J}(\mathbf{x}, \mathbf{v}; \Phi)] v_i v_j d^3 v$, etc.

Now two questions remain:

- **1.** How to choose a sensible $f(\mathbf{J})$
- **2.** How to find $\Phi(\mathbf{x})$ consistent with this DF

Distribution functions for spheroidal systems

Recall that surfaces of constant energy are approximately tetrahedra in action space, $E \approx E(\Omega_r J_r + \Omega_z J_z + \Omega_\phi J_\phi).$

So if we consider $f(\mathbf{J}) = f_0[h(\mathbf{J})]$, where $h(\mathbf{J}) = k_r J_r + k_z J_z + k_{\phi} |J_{\phi}|$ is a linear combination of three actions with the above coefficients, it will be approximately isotropic (dependent on energy only).

We may construct tailored anisotropic systems by changing the coefficients k_i . [Binney 2014, Posti+ 2015, Williams & Evans 2015].

The function f_0 is responsible for the overall density profile of the system; a reasonable choice is a double-power-law model:

$$f_0(h) \propto rac{h^{\Gamma}}{ig(1+[h/h_0]^\etaig)^{(\Gamma-{
m B})/\eta}}$$

Γ: inner slope B: outer slope h_0 : scale action

pola

prograde

Distribution functions for disky systems

In the epicyclic approximation, the motion is separable in R, z, and the DF in each dimension has a nearly Boltzmann form: $f(E, L_z, E_z) \propto f_0(L_z) \exp(-E_R/\sigma_R^2) \exp(-E_z/\sigma_z^2).$

One may construct a similarly behaving DF expressed in terms of actions, replacing $E_R \rightarrow \Omega_R J_R$, $E_z \rightarrow \Omega_z J_z$ – a quasi-isothermal DF [Binney & McMillan 2011]:

$$\begin{split} f(\mathbf{J}) &= \frac{\tilde{\Sigma}\,\Omega}{2\pi^2\,\kappa^2} \times \frac{\kappa}{\tilde{\sigma}_r^2} \exp\left(-\frac{\kappa\,J_r}{\tilde{\sigma}_r^2}\right) \times \frac{\nu}{\tilde{\sigma}_z^2} \exp\left(-\frac{\nu\,J_z}{\tilde{\sigma}_z^2}\right) \times \begin{cases} 1 & \text{if } J_\phi \geq 0, \\ \exp\left(\frac{2\Omega\,J_\phi}{\tilde{\sigma}_r^2}\right) & \text{if } J_\phi < 0, \end{cases} \\ \tilde{\Sigma}(R_c) &\equiv \Sigma_0 \exp\left(-\frac{R_c}{R_{\text{disk}}}\right), \quad \tilde{\sigma}_r^2(R_c) \equiv \sigma_{r,0}^2 \exp\left(-\frac{2R_c}{R_{\sigma,r}}\right), \quad \tilde{\sigma}_z^2(R_c) \equiv 2\,h_{\text{disk}}^2\,\nu^2(R_c). \end{split}$$

It produces nearly exponential radial profiles of surface density and nearly isothermal vertical density profiles: $\rho(R, z) \propto \exp\left(-\frac{R}{R_{\text{disk}}}\right) \operatorname{sech}^2\left(\frac{z}{h}\right)$.

Self-consistent models

(Assumption: a galaxy is a collisionless system in a steady state)

Self-consistent models

distribution function integrals of motion gravitational potential

1. Collisionless Boltzmann equation:

$$\mathbf{v} \frac{\partial f}{\partial \mathbf{x}} - \frac{\partial \Phi}{\partial \mathbf{x}} \frac{\partial f}{\partial \mathbf{v}} = 0 \implies f = f\left(\mathcal{I}(\mathbf{x}, \mathbf{v}; \Phi)\right).$$

(Assumption: a galaxy is a collisionless system in a steady state)

2. Poisson equation:

$$\nabla^2 \Phi(\mathbf{x}) = 4\pi \ G \ \rho(\mathbf{x}).$$
 total density

(Assumption: Newtonian gravity)

Self-consistent models

distribution function integrals of motion gravitational potential

1. Collisionless Boltzmann equation:

$$\mathbf{v} \frac{\partial f}{\partial \mathbf{x}} - \frac{\partial \Phi}{\partial \mathbf{x}} \frac{\partial f}{\partial \mathbf{v}} = 0 \implies f = f\left(\mathcal{I}(\mathbf{x}, \mathbf{v}; \Phi)\right).$$

(Assumption: a galaxy is a collisionless system in a steady state)

2. Poisson equation:

$$abla^2 \Phi(\mathbf{x}) = 4\pi \ G \ \rho(\mathbf{x}).$$
total density

(Assumption: Newtonian gravity)

3. The link:

$$\rho(\mathbf{x}) = \iiint d^3 v \, f(\mathbf{x}, \mathbf{v}).$$

(Assumption: self-consistency)

Self-consistent models – iterative approach

- **1.** Assume a particular distribution function $f(\mathcal{I})$;
- **2.** Adopt an initial guess for $\Phi(\mathbf{x})$;
- 3. Establish the integrals of motion I(x, v) in this potential;
 4. Compute the density ρ(x) = ∫∫∫ d³v f(I(x, v));
 5. Solve the Poisson equation to find the new potential Φ(x);
 6. Repeat until convergence.

Origin: Prendergast & Tomer 1970;

used in Kuijken & Dubinski 1995, Widrow+ 2008, Taranu+ 2017 (GalactICs),

Piffl+ 2014, Cole & Binney 2016, Sanders & Evans 2016 (action-based formalism).

Advantages of models based on distribution function

Clear physical meaning

(localized structures in the space of integrals of motion);

Easy to compare different models

(how to compare two *N*-body or *N*-orbit models?);

- Easy to compare models to discrete observational data;
- Easy to sample particles from the distribution function (convert to an N-body model);
- Stability analysis

(perturbation theory most naturally formulated in terms of actions);

Caveats:

- Implicitly rely on the integrability of the potential, ignore the presence of resonant orbit families (but see Binney 2016, 2018);
- So far implemented only for axisymmetric models (not a fundamental limitation).

Galactic modelling tasks

- $\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$ For Gravitational potentials and forces
- $\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$ **>** Orbit integration and analysis
- $\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$ Econversion between position–velocity and action–angle variables
- \checkmark \checkmark \checkmark \checkmark **>** Distribution functions
 - \checkmark \checkmark **Streams modelling**
 - ✓ ► DF-based self-consistent models
 - ✓ ► Orbit-superposition (Schwarzschild) models
 - \checkmark \checkmark \blacktriangleright Jeans models

Galactic modelling software

Torus Mapper [McMillan & Binney 2008; Binney & McMillan 2016]

TACT (the Action Computation Toolbox) [Sanders & Binney 2012–2016]

Galpy [Bovy 2015]

Gala [Price-Whelan 2017]

Agama [Vasiliev 2019]

AGAM - All-purpose galaxy modeling architecture

- Extensive collection of gravitational potential models (analytic profiles, azimuthal- and spherical-harmonic expansions) constructed from smooth density profiles or N-body snapshots;
- Conversion to/from action/angle variables;
- Self-consistent multicomponent models with action-based DFs;
- Schwarzschild orbit-superposition models;
- Generation of initial conditions for N-body simulations;
- Various math tools: 1d,2d,3d spline interpolation, penalized spline fitting and density estimation, multidimensional sampling;
- Efficient and carefully designed C++ implementation, examples, Python and Fortran interfaces, plugins for Galpy, NEMO, AMUSE.

arXiv:1802.08239, 1802.08255 https://github.com/GalacticDynamics-Oxford/Agama