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Hamiltonian mechanics

Consider a particle moving in a potential Φ(x).

x(t), v(t) are “ordinary” D-dimensional position/velocity coordinates;

H(x, v) = Φ(x) + 1
2
|v|2 is the Hamiltonian.

The equations of motion are

dx

dt
≡ ẋ = v,

dv

dt
≡ v̇ = −∂Φ

∂x

One may consider a general class of Hamiltonian systems defined by
H(q,p) as a function of generalized phase-space coordinates,
which satisfy the Hamilton’s equations of motion:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q



Poisson brackets

Define the commutator operator for two functions of phase-space
coordinates A(q,p) and B(q,p) as

[A,B] ≡ ∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
.

It follows immediately that

[A,A] = 0, [A,B] = −[B ,A], (antisymmetry)[
[A,B],C

]
+
[
[B ,C ],A

]
+
[
[C ,A],B

]
= 0, (Jacobi identity)

[qi , qj ] = 0, [pi , pj ] = 0, [qi , pj ] = δij , i , j = 1..D,

and the Hamilton equations can be written as

q̇i = [qi ,H], ṗi = [pi ,H]



Integrals of motion

If [A,B] = 0, we say that A commutes with B .

If a function A(q,p) commutes with the Hamiltonian, it is conserved along
the particle’s trajectory – we call it an integral of motion:

dA

dt
=
∂A

∂q

dq

dt
+
∂A

∂p

dp

dt

=
∂A

∂q

∂H

∂p
− ∂A

∂p

∂H

∂q

= [A,H] = 0

Obviously, the Hamiltonian itself is an integral of motion.

Phase-space distribution function f (q,p) satisfies the collisionless Boltzmann
equation and hence is also conserved along the trajectory of any particle.



Canonical transformations

Consider a change of variables from p,q to P,Q, and express the
Hamiltonian H(P,Q) or any other function in phase space in terms of
the new variables.

If the new variables satisfy the canonical commutatation relations
[Qi ,Qj ] = 0, [Pi ,Pj ] = 0, [Qi ,Pj ] = δij ,
such transformation is called canonical (or symplectic).

It also preserves

I Hamilton’s equations of motion:

Q̇i = [Qi ,H], Ṗi = [Pi ,H];

I more generally, all Poisson brackets:[
A(p,q),B(p,q)

]
=
[
A(P,Q),B(P,Q)

]
;

I all Poincaré invariants:
∮

p · dq

I 2D-dimensional phase volume element: dDq dDp = dDQ dDP



Examples of canonical transformations

1. Exchange: Q = p, P = q

: F (q,Q) = q ·Q

(i.e., there is no fundamental difference between coordinate and momentum variables).

2. Point transformation: define Q(q) in whatever way, and then P(q,p) is
uniquely specified.

F (q,P) = Q(q) · P

For instance, cartesian to polar coordinates: q ≡ {x , y} to Q ≡ {r , φ}
implies P ≡ {pr , pφ} =

{
(xpx + ypy )/r , xpy − ypx

}
.

3. Hamiltonian flow: integrate the equations of motion for some time τ , and
let {Q,P}(q,p; τ) be the new coordinates and momenta of a point
started from initial conditions q,p.

One powerful way of constructing such transformations is to introduce

a generating function F (q,P) such that p =
∂F

∂q
, Q =

∂F

∂P
;

F could also be expressed in terms of some other combination of old and
new variables, e.g., F (q,Q), etc.
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The holy grail of Hamiltonian mechanics

What is the simplest possible Hamiltonian system?

A free particle!

H(q,p) = 1
2
|p|2 =⇒ pi(t) = const, qi(t) = pi t + const

Unfortunately, it corresponds to an unbound motion,
unlike [most] stars in galaxies.

The next simplest (and more realistic) thing? Periodic motion:

q1

q2

H(q,p) = H(p) =⇒ pi(t) = const, qi(t) =
∂H

∂pi
t + const,

where q are treated
as angle-like (periodic)
variables, q + 2π ∼= q
on a D-dimensional torus.

These are action–angle variables
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Integrability and the Arnold–Liouville theorem

If I1 and I2 are two integrals of motion, then the Jacobi identity[
[I1, I2],H

]
+
[
[I2,H], I1

]
+
[
[H , I1], I2

]
= 0 implies that [I1, I2]

is also an integral of motion.

(Example: I1 = Lx , I2 = Ly ⇒ [I1, I2] = Lz).

If [I1, I2] is identically zero, the two integrals are said to be in involution.

A Hamiltonian system with D degrees of freedom is integrable if it has D
independent integrals of motion I1 . . . ID (including the Hamiltonian itself)
which are all in involution with each other.

The motion of any particle is restricted to a D-dimensional hypersurface of
the 2D-dimensional phase space.

Theorem: this hypersurface is diffeomorphic to (i.e., could be smoothly

deformed into) a D-torus, parametrized by D periodic variables θ ∈ [0..2π).



Action–angle variables for a 1d simple harmonic oscillator

The simplest possible Hamiltonian system: H(q, p) = 1
2
p2 + 1

2
ω2 q2.

The trajectory is q(t) = A sin(ωt + φ0), p(t) = Aω cos(ωt + φ0),
and the energy is E = 1

2
ω2 A2.

The motion is periodic with frequency ω (⇔ period 2π/ω),
so we define the angle θ = ωt + φ0.

The action J is 1
2π
×area enclosed by the trajectory:

J =
1

2π

∮
p dq

=
1

2π

∫ 2π

0

p(θ)
dq

dθ
dθ

=
1

2π

∫ 2π

0

A2ω cos2 θ dθ

=
A2ω

2
=

E

ω

q

p

A

ωA
θ



Action–angle variables for a 2d simple harmonic oscillator

The same thing but in two dimensions: q = {x , y}, p = {px , py};
Hamiltonian:

H(q,p) =
1

2

(
p2
x + ω2

x x
2
)

+
1

2

(
p2
y + ω2

y y
2
)

≡ Hx(x , px) + Hy (y , py )

Motion is separable in x , y –
two uncoupled simple harmonic oscillators,
two integrals of motion Ex ,Ey ,
actions are Jx = Ex/ωx , Jy = Ey/ωy .

-1 -0.5 0 0.5 1

x

-0.6

-0.4

-0.2

0

0.2

0.4

y

0.0

0.1

0.2

0.3

0.4

0.5

Φ
(x

)

0.1 0.3 0.5

Φ(y)



Action–angle variables for a 2d planar axisymmetric potential
A slightly more complicated system: two degrees of freedom, motion in
an axisymmetric potential Φ(x , y) = Φ(R), where R ≡

√
x2 + y 2.

Canonical coordinates: q = {R , φ},p = {pR , pφ}

Hamiltonian: H = Φ(R) +
1

2

(
p2
R +

p2
φ

R2

)
≡ Φeff(R) +

1

2
p2
R

equations of motion: Ṙ = pR , φ̇ =
pφ
R2
, ṗR = −dΦeff

dR
, ṗφ = 0

integrals of motion: E and pφ

Motion in R is described by a 1d
effective potential Φeff(R) ≡ Φ(R) + p2

φ/R
2

The radial action is

JR =
1

π

∫ R+

R−

pR(R ; E , pφ) dR

=
1

π

∫ R+

R−

√
2
[
(E − Φeff(R)

]
dR 0.0 0.2 0.4 0.6 0.8 1.0 1.2

R
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Action–angle variables for a 2d planar axisymmetric potential

Motion in φ: ṗφ = 0 ⇒ pφ = const,

hence the azimuthal action is

Jφ =
1

2π

∫ 2π

0

pφ dφ = pφ.

The actions JR , Jφ describe the extent of
the orbit in two complementary dimensions:

Jφ corresponds to the “guiding radius”
(the radius of a circular orbit with
the given angular momentum Jφ),

JR gives the extent of radial oscillation
about this guiding radius.

They can be varied independently, and
any possible choice (provided that JR ≥ 0)

corresponds to some trajectory. 1.0 0.5 0.0 0.5 1.0
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Angles and frequencies

Note that φ̇ = pφ/R
2(t) 6= const, so φ is not a canonically conjugate angle

variable to pφ!

Such variable is θφ defined to increase linearly with time,
and similarly the radial phase angle θR also increases linearly with time:

θR = ΩR t, θφ = Ωφ t, where

ΩR ≡
∂H(JR , Jφ)

∂JR
, Ωφ ≡

∂H(JR , Jφ)

∂Jφ
are orbital frequencies.

θR(R ; E , pφ) = ΩR

∫ R

R−

dt

dR
dR = ΩR

∫ R

R−

dR

pR(R ; E , pφ)

Radial orbital period TR ≡
2π

ΩR
= 2

∫ R+

R−

dR

pR
= 2

∫ R+

R−

dR√
2
[
E − Φ(R)

]
− p2

φ

R2

Azimuthal periodTφ ≡
2π

Ωφ

=
2π
∫ R+

R−
dR/pR

pφ
∫ R+

R−
dR/(R2 pR)



Action–angle variables for a 3d spherical potential

Spherical coordinates: r , θ, φ, pr , pθ, pφ

Hamiltonian: H = Φ(r) +
1

2

(
p2
r +

p2
θ

r 2
+

p2
φ

r 2 sin2 θ

)
Integrals of motion: E , Lx , Ly , Lz

[
, L ≡

√
L2
x + L2

y + L2
z

]
Radial action: Jr =

1

π

∫ r+

r−

√
2
[
E − Φ(r)

]
− L2

r 2
≥ 0

Azimuthal action: Jφ = Lz (any sign)

Vertical action: Jθ ≡ Jz = L− |Lz | ≥ 0

In general, actions, angles, frequencies, or H(J) do not have analytic
expressions. One exception is the isochrone potential [Hénon 1959]:

Φ(r) = − G M

b +
√
b2 + r 2

(includes Kepler and harmonic oscliiator as limiting cases)

H(J) = − 2 (G M)2(
2Jr + L +

√
L2 + 4G M b

)2



Action–angle variables for a 3d axisymmetric potential

For nearly-circular orbits close to
the equatorial plane, one may use
the epicyclic approximation:

Φ(R , z) ≈ ΦR(R) + Φz(z),

motion in R , φ as in the planar
axisymmetric problem with
effective potential
Φeff = ΦR(R) + 1

2
L2/r 2,

and independent, nearly
harmonic motion in z .

However, it becomes increasingly
inaccurate for orbits with high
eccentricity and/or inclination.
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State of the art: Stäckel fudge

Fact: orbits in realistic axisymmetric galactic potentials are much better
aligned with prolate spheroidal coordinates.

One may explore the assumption that the motion is separable in these
coordinates (λ, ν).
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Fact: orbits in realistic axisymmetric galactic potentials are much better
aligned with prolate spheroidal coordinates.

One may explore the assumption that the motion is separable in these
coordinates (λ, ν).
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Stäckel fudge [Binney 2012]

The most general form of potential that satisfies the separability condition

is the Stäckel potential1: Φ(λ, ν) = − f1(λ)− f2(ν)

λ− ν
.

The motion in λ and ν directions, with canonical momenta pλ, pν ,
is governed by two separate equations:

2(λ−∆2)λ p2
λ =

[
E − L2

z

2(λ−∆2)

]
λ− [I3 + (λ− ν)Φ(λ, ν)],

2(ν −∆2) ν p2
ν =

[
E − L2

z

2(ν −∆2)

]
ν − [I3 + (ν − λ)Φ(λ, ν)].

Under the approximation that the separation constant I3 is indeed
conserved along the orbit, actions are computed as

Jλ =
1

π

∫ λmax

λmin

pλ dλ, Jν =
1

π

∫ νmax

νmin

pν dν.

1Note that the potential of the Perfect Ellipsoid [de Zeeuw 1985] is of the Stäckel
form, but it is only one example of a much wider class of potentials.



Stäckel fudge in practice

A rather flexible approximation: for each orbit, we have the freedom of
using two functions f1(λ), f2(ν) (directly evaluated from the actual
potential Φ(R , z)) to describe the motion in two independent directions.
These functions are different for each orbit (implicitly depend on E , Lz , I3).
Moreover, we may choose the focal distance ∆ of the auxiliary prolate
spheroidal coordinate system for each orbit independently.
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Accuracy of the Stäckel fudge

Accuracy of action conservation using the Stäckel fudge: . 1% for most
disk orbits, . 10% even for high-eccentricity orbits [except near resonances!].

Interpolation of Jr , Jz on a 3d grid of E , Lz , I3: 10x speed-up
at the expense of a moderate [not always acceptable!] decrease in accuracy.
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Other methods for action computation

The accuracy of the Stäckel approximation is “uncontrollable” (cannot be
systematically improved), and it is mainly used in axisymmetric potentials.

However, actions offer the only systematic method for computing the
integrals of motion in a non-perturbative way for an arbitrary potential:

I Introduce a simple enough “toy” potential Φt (e.g., isochrone), for which
the mapping between position–velocity {x, v} and action–angle {Jt ,θt}
coordinates is known analytically.

I We seek a canonical transformation between the true (yet unknown) {J,θ}
and the “toy” {Jt ,θt}. This transformation is described by a generating
function S(J,θt), which can be expanded into Fourier series in θt :

S(J,θt) = J · θt +
∑

n Sn(J) exp(in · θt), where n are triplets of integers.

I Choose the Fourier coefficients Sn up to some maximum order n to
approximate the true Hamiltonian to any desired accuracy.

I The transformation is given by Jt = ∂S/∂θt , θ = ∂S/∂J.



Other methods for action computation

There are several variants of these methods, but we won’t go into details.

I First numerically integrate the orbit, then obtain the coefficients Sn to
minimize the variation of the toy Hamiltonian across the real orbit
[Sanders & Binney 2014; Bovy 2014]. This gives the transformation from
{x, v} to {J,θ}.

I Reverse transformation (torus mapping) allows one to compute the
position/velocity from action/angle without the need to integrate an
orbit [McGill & Binney 1990; McMillan & Binney 2008].

I A variation of this approach also works for resonantly-trapped orbits
[Kaasalainen 1994; Binney 2016, 2018].



Advantages of action/angle variables

I Clear physical meaning (describe the extent of oscillations in each dimension).

I Most natural description of motion (angles change linearly with time).

I Possible range for each action variable is [0..∞) or (−∞..∞),
independently of the other ones (unlike E and L, say).

I Canonical coordinates ⇒ the 6d phase-space volume element is
d3x d3v = d3J d3θ.

I Actions are adiabatic invariants (are conserved under slow variation of potential).

I Perturbation theory most naturally formulated in terms of actions.

I Efficient methods for conversion between {x, v} and {J,θ} now exist.



Fun facts / rules of thumb about actions

Jz

Jr

Jφ

polar

radial

p
rog

ra
d
e

re
trog

ra
d
e

180
◦ ← inclination→

0
◦

0
←

eccentricity
→

1

I Dimension of actions is length×velocity:
if a star at a galactocentric distance r travels with

velocity v , then [at least one of the actions] J ∼ r v .

I Frequencies: Ωi(J) = ∂H/∂Ji
characteristic velocity vi ∼

√
Ωi Ji

e.g., for a circular orbit Jφ = R vφ, Ωφ = vφ/R.

I Surfaces of constant energy H(J) = E are
approximately tetrahedra in the 3d action space,

with E ≈ E (Ωr Jr + Ωz Jz + Ωφ Jφ).



Natural coordinates to describe orbits

q

p
θJ

1d example

I The entire 6d phase space is foliated into
non-intersecting 3d orbital tori.

I Actions tell you which orbit the star is on,
angles – where it is located on this orbit.

I Angles change linearly with time, θi = Ωi t

I Torus construction provides the transformation
J,θ → x, v, i.e., one can find the position–velocity at any time without the
need to integrate the orbit.

I In a time-averaged sense, only actions are significant (distribution of stars
is averaged over angles – phase mixed);

however, for an initially localized ensemble of stars (e.g., a stream from a
disrupted cluster), the distribution over angles is not uniform.



Digression: the Poincaré surface of section
A convenient tool for analyzing orbits in 2d Hamiltonian systems at a fixed E
(e.g., motion in the equatorial plane, or in the meridional plane of an axisymmetric

potential at a fixed Lz)

1. Numerically integrate the trajectory: x(t), y(t), px(t), py (t).

2. Every time it passes through the axis y = 0 with ẏ > 0, put a point on
the x , px plane.

1.0 0.5 0.0 0.5 1.0

x

1.0

0.5

0.0

0.5

1.0

y

1.0 0.5 0.0 0.5 1.0

x

1.0

0.5

0.0

0.5

1.0

p
x



Digression: the Poincaré surface of section
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Digression: the Poincaré surface of section
A convenient tool for analyzing orbits in 2d Hamiltonian systems at a fixed E
(e.g., motion in the equatorial plane, or in the meridional plane of an axisymmetric

potential at a fixed Lz)

3. Each orbit corresponds to a closed loop in this plane.

4. Repeat for many different initial conditions to get the “phase portrait”
of the Hamiltonian.
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Digression: the Poincaré surface of section
A convenient tool for analyzing orbits in 2d Hamiltonian systems at a fixed E
(e.g., motion in the equatorial plane, or in the meridional plane of an axisymmetric

potential at a fixed Lz)

3. Each orbit corresponds to a closed loop in this plane.

5. The action of an orbit is just the area inside its Poincaré curve:
Jx = 1

2π

∮
px dx

1.0 0.5 0.0 0.5 1.0

x

1.0

0.5

0.0

0.5

1.0

y

1.0 0.5 0.0 0.5 1.0

x

1.0

0.5

0.0

0.5

1.0

p
x



Digression: the Poincaré surface of section
A convenient tool for analyzing orbits in 2d Hamiltonian systems at a fixed E
(e.g., motion in the equatorial plane, or in the meridional plane of an axisymmetric

potential at a fixed Lz)

6. Now repeat this exercise for a different choice of energy E
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Digression: the Poincaré surface of section
A convenient tool for analyzing orbits in 2d Hamiltonian systems at a fixed E
(e.g., motion in the equatorial plane, or in the meridional plane of an axisymmetric

potential at a fixed Lz)

7. This portrait may contain more than one orbit family!

8. The meaning of actions is different for each orbit family (e.g., it is Jx
for a box orbit, and Jr for a loop orbit)
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Digression: the Poincaré surface of section
A convenient tool for analyzing orbits in 2d Hamiltonian systems at a fixed E
(e.g., motion in the equatorial plane, or in the meridional plane of an axisymmetric

potential at a fixed Lz)

7. This portrait may contain more than one orbit family!

9. For high-order resonances the action may describe the width around
parent orbit, and for chaotic orbits the actions are not defined at all..
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Action–angles are canonical coordinates

A distribution function (DF) in phase space f (x, v) can be expressed in any
other coordinates, e.g., f (E , L) or f (J, θ).

In a phase-mixed system, it is independent of θ.

The mass in a given volume of phase space is
∫
f (x, v) d3x d3v =∫

f (J, θ) d3J d3θ = (2π)3
∫
f (J) d3J –

does not depend on the potential and has no extra multiplicative factors!

(e.g., compared to
∫
f (E , L) 4π2 T (E , L; Φ) dL2 for a conventional DF).

The functional form of the DF is independent of the potential Φ, but
the correspondence between x, v and J,θ, of course, does depend on Φ.



Adiabatic invariance of actions

Actions are conserved under slow variations of potential (Ω τ � 1).

Examples:

I accreted satellite galaxies should stay localized in the action space;

I compression of the dark halo after the formation of the stellar disk:



Perturbation theory in action space

f (J,θ, t) = f0(J) + εf1(J,θ, t),

H(J,θ, t) = H0(J) + εH1(J,θ, t) = H(x, v, t) ≡ Φ0(x) + εΦ1(x, t) + 1
2
v 2.

Linearized Vlasov / collisionless Boltzmann equation:

0 =
∂f

∂t
+
[
H , f

]
≈ ∂f1

∂t
+
∂f1
∂θ

∂H0

∂J
− ∂f0
∂J

∂Φ1

∂θ
.

Φ1(x, t) is the external perturbation augmented with internal self-gravity
(diverges at resonances!).

For the given f0 and Φ1, one may compute the
perturbed DF f1(J,θ, t) [e.g., Monari+ 2016–2018] –
so far has only been done under epicyclic
approximation, but a Stäckel generalization
is possible.



Distribution functions

The pair f (J), Φ(x) provides the complete description of the system:

I Φ determines the transformation {x, v} ↔ {J,θ};

I density is ρ(x) =

∫
f
[
J(x, v; Φ)

]
d3v ;

I velocity moments are v =
1

ρ

∫
f
[
J(x, v; Φ)

]
v d3v ;

vi vj =
1

ρ

∫
f
[
J(x, v; Φ)

]
vi vj d

3v , etc.

Now two questions remain:

1. How to choose a sensible f (J)

2. How to find Φ(x) consistent with this DF



Distribution functions for spheroidal systems
Jz

Jr

Jφ

polar

radial

p
rog

ra
d
e

re
trog

ra
d
e

Γ: inner slope
B: outer slope
h0: scale action

Recall that surfaces of constant energy are
approximately tetrahedra in action space,
E ≈ E (Ωr Jr + Ωz Jz + Ωφ Jφ).

So if we consider f (J) = f0
[
h(J)

]
, where

h(J) = kr Jr + kz Jz + kφ |Jφ| is a linear
combination of three actions with the above
coefficients, it will be approximately isotropic (dependent on energy only).

We may construct tailored anisotropic systems by changing the coefficients ki .
[Binney 2014, Posti+ 2015, Williams & Evans 2015].

The function f0 is responsible for the overall density profile of the system;
a reasonable choice is a double-power-law model:

f0(h) ∝ hΓ(
1 + [h/h0]η

)(Γ−B)/η



Distribution functions for disky systems

In the epicyclic approximation, the motion is separable in R , z ,

and the DF in each dimension has a nearly Boltzmann form:

f (E , Lz ,Ez) ∝ f0(Lz) exp(−ER/σ
2
R) exp(−Ez/σ

2
z ).

One may construct a similarly behaving DF expressed in terms of actions,

replacing ER → ΩR JR , Ez → Ωz Jz – a quasi-isothermal DF
[Binney & McMillan 2011]:

f (J) =
Σ̃ Ω

2π2 κ2
× κ

σ̃2
r

exp

(
−κ Jr
σ̃2
r

)
× ν

σ̃2
z

exp

(
−ν Jz
σ̃2
z

)
×

{
1 if Jφ ≥ 0,

exp
(

2Ω Jφ
σ̃2
r

)
if Jφ < 0,

Σ̃(Rc) ≡ Σ0 exp
(
− Rc

Rdisk

)
, σ̃2

r (Rc) ≡ σ2
r ,0 exp

(
− 2Rc

Rσ,r

)
, σ̃2

z (Rc) ≡ 2 h2
disk ν

2(Rc).

It produces nearly exponential radial profiles of surface density and nearly

isothermal vertical density profiles: ρ(R , z) ∝ exp

(
− R

Rdisk

)
sech2

(z
h

)
.



Self-consistent models

1. Collisionless Boltzmann equation:

v
∂f

∂x
− ∂Φ

∂x

∂f

∂v
= 0 =⇒ f = f

(
I(x, v; Φ)

)
.

distribution function
integrals of motion

gravitational potential

(Assumption: a galaxy is a collisionless system in a steady state)

2. Poisson equation:

∇2Φ(x) = 4π G ρ(x).
total density

(Assumption: Newtonian gravity)

3. The link:

ρ(x) =

∫∫∫
d3v f (x, v).

(Assumption: self-consistency)



Self-consistent models

1. Collisionless Boltzmann equation:

v
∂f

∂x
− ∂Φ

∂x

∂f

∂v
= 0 =⇒ f = f

(
I(x, v; Φ)

)
.

distribution function
integrals of motion

gravitational potential

(Assumption: a galaxy is a collisionless system in a steady state)

2. Poisson equation:

∇2Φ(x) = 4π G ρ(x).
total density

(Assumption: Newtonian gravity)

3. The link:

ρ(x) =

∫∫∫
d3v f (x, v).

(Assumption: self-consistency)



Self-consistent models

1. Collisionless Boltzmann equation:

v
∂f

∂x
− ∂Φ

∂x

∂f

∂v
= 0 =⇒ f = f

(
I(x, v; Φ)

)
.

distribution function
integrals of motion

gravitational potential

(Assumption: a galaxy is a collisionless system in a steady state)

2. Poisson equation:

∇2Φ(x) = 4π G ρ(x).
total density

(Assumption: Newtonian gravity)

3. The link:

ρ(x) =

∫∫∫
d3v f (x, v).

(Assumption: self-consistency)



Self-consistent models

1. Collisionless Boltzmann equation:

v
∂f

∂x
− ∂Φ

∂x

∂f

∂v
= 0 =⇒ f = f

(
I(x, v; Φ)

)
.

distribution function
integrals of motion

gravitational potential

(Assumption: a galaxy is a collisionless system in a steady state)

2. Poisson equation:

∇2Φ(x) = 4π G ρ(x).
total density

(Assumption: Newtonian gravity)

3. The link:

ρ(x) =

∫∫∫
d3v f (x, v).

(Assumption: self-consistency)



Self-consistent models – iterative approach

1. Assume a particular distribution function f
(
I
)
;

2. Adopt an initial guess for Φ(x);

3. Establish the integrals of motion I(x, v) in this potential;

4. Compute the density ρ(x) =

∫∫∫
d3v f

(
I(x, v)

)
;

5. Solve the Poisson equation to find the new potential Φ(x);

6. Repeat until convergence.

Origin: Prendergast & Tomer 1970;

used in Kuijken & Dubinski 1995, Widrow+ 2008, Taranu+ 2017 (GalactICs),

Piffl+ 2014, Cole & Binney 2016, Sanders & Evans 2016 (action-based formalism).



Advantages of models based on distribution function

I Clear physical meaning

(localized structures in the space of integrals of motion);

I Easy to compare different models

(how to compare two N-body or N-orbit models?);

I Easy to compare models to discrete observational data;

I Easy to sample particles from the distribution function

(convert to an N-body model);

I Stability analysis

(perturbation theory most naturally formulated in terms of actions);

Caveats:
I Implicitly rely on the integrability of the potential,

ignore the presence of resonant orbit families (but see Binney 2016, 2018);

I So far implemented only for axisymmetric models

(not a fundamental limitation).



Galactic modelling tasks

I Gravitational potentials and forces

I Orbit integration and analysis

I Conversion between position–velocity and action–angle variables

I Distribution functions

I Streams modelling

I DF-based self-consistent models

I Orbit-superposition (Schwarzschild) models

I Jeans models

Galactic modelling software

Torus Mapper [McMillan & Binney 2008; Binney & McMillan 2016]

TACT (the Action Computation Toolbox) [Sanders & Binney 2012–2016]

Galpy [Bovy 2015]

Gala [Price-Whelan 2017]

Agama [Vasiliev 2019]

X XXXX

XXXXX
XXX X X
X X X

XX

X

X

X X



– All-purpose galaxy modeling architecture

I Extensive collection of gravitational potential models

(analytic profiles, azimuthal- and spherical-harmonic expansions)

constructed from smooth density profiles or N-body snapshots;

I Conversion to/from action/angle variables;

I Self-consistent multicomponent models with action-based DFs;

I Schwarzschild orbit-superposition models;

I Generation of initial conditions for N-body simulations;

I Various math tools: 1d,2d,3d spline interpolation, penalized spline fitting and

density estimation, multidimensional sampling;

I Efficient and carefully designed C++ implementation, examples,

Python and Fortran interfaces, plugins for Galpy, NEMO, AMUSE.

arXiv:1802.08239, 1802.08255

https://github.com/GalacticDynamics-Oxford/Agama

http://adsabs.harvard.edu/abs/2019MNRAS.482.1525V
http://arxiv.org/abs/1802.08255
https://github.com/GalacticDynamics-Oxford/Agama

