Distribution Function-based dynamical modelling of stellar systems Eugene Vasiliev (University of Surrey)

+ Paula Gherghinescu, Payel Das

Revealing the Milky Way with Gaia session @ National Astronomy Meeting, Durham, 11 July 2025

Dynamical modelling with discrete tracers

globular clusters dwarf spheroidals galactic haloes observed positions and velocities of individual stars or other tracers (planetary nebulae, globular clusters)

gravitational potential:
central IMBH, DM halo

 ω Cen [credit: NASA]

DF modelling

Distribution function of stars (or other tracers) in the 6d phase space: $f(\mathbf{x}, \mathbf{v})$.

By Jeans's theorem, in equilibrium it may only depend on integrals of motion, e.g. actions J, which, in turn, depend on the potential.

By maximising the likelihood of the observed dataset, we determine both f and Φ :

DF modelling

When dealing with incomplete phase-space information (e.g. unknown distance *D*, proper motions μ , or line-of-sight velocity v_{los}), need to marginalise over missing dimensions: $\mathcal{L}^{(i)} = \int_0^\infty \mathrm{d}D \ f(\alpha^{(i)}, \delta^{(i)}, D, \mu_\alpha^{(i)}, \mu_\delta^{(i)}, v_{los}^{(i)}).$

Likewise, in case of measurement uncertainties, need to convolve with the error distribution: $\mathcal{L}^{(i)} = \int_{-\infty}^{\infty} \mathrm{d}\mathbf{v}_{\mathrm{los}} \, \mathcal{N}\big(\mathbf{v}_{\mathrm{los}} - \mathbf{v}_{\mathrm{los}}^{(i)}; \epsilon_{\mathbf{v}_{\mathrm{los}}}^{(i)}\big) \, f\big(\alpha^{(i)}, \delta^{(i)}, D^{(i)}, \mu_{\alpha}^{(i)}, \mu_{\delta}^{(i)}, \mathbf{v}_{\mathrm{los}}\big).$

In practice, these (multidimensional) integrals are computed using Monte Carlo approach with importance sampling and *quasi*-random (low-discrepancy) numbers.

Previous work on DF modelling

	tracers	$lpha$, δ	D	$\mu_{\alpha,\delta}$	Vlos	potential
Posti & Helmi 2019; Vasiliev	globular clusters	+	+	+	+	disc+axi.halo
2019; Wang+ 2022	in MW halo					
Correa Magnus & Vasiliev 2022	GC + dSph in MW halo	+	+	+	+	$disc{+}sph.halo$
Hattori+ 2021	RR Lyrae in MW halo	+	+	+	-	disc+axi.halo
Pascale+ 2018, 2019, 2024;	stars in dSph	+	_	_	+	spherical
Arroyo-Polonio+ 2025						
Della Croce+ 2024	stars in GC	+	-	±	\pm	spherical
Read+ 2021	mock stars in dSph	+	\pm	±	+	spherical
Gherghinescu+ 2023	mock stars in M31 halo	+	+	+	+	axisym.
this study	mock (dSph or M31)	+	-	_	+	axisym.

Previous work on DF modelling

	tracers	$lpha$, δ	D	$\mu_{\alpha,\delta}$	Vlos	potential
Posti & Helmi 2019; Vasiliev 2019; Wang+ 2022	globular clusters in MW halo	+	+	+	+	disc+axi.halo
Correa Magnus & Vasiliev 2022	GC + dSph in MW halo	+	+	+	+	$disc{+}sph.halo$
Hattori+ 2021	RR Lyrae in MW halo	+	+	+	-	disc + axi.halo
Pascale+ 2018, 2019, 2024; Arroyo-Polonio+ 2025	stars in dSph	+	-	_	+	spherical
Della Croce+ 2024	stars in GC	+	_	±	\pm	spherical
Read+ 2021	mock stars in dSph	+	±	±	+	spherical
Gherghinescu+ 2023	mock stars in M31 halo	+	+	+	+	axisym.
this study	mock (dSph or M31)	+	-	R	+	axisym.

this combination was never explored before

Ingredients

• gravitational potential $\Phi(R, z)$: stellar disc (fixed) + flattened NFW halo $\rho_{\rm h}(R, z) = \rho_0 \chi^{-1} (1 + \chi)^{-2}, \quad \chi \equiv \sqrt{R^2 + (z/q)^2} / r_{\rm scale}$ with axis ratio q.

double-power-law DF [Posti+ 2015]:

$$\begin{split} f(\mathbf{J}) &= \frac{M_0}{(2\pi J_0)^3} \bigg[1 + \frac{J_0}{h(\mathbf{J})} \bigg]^{\alpha} \bigg[1 + \frac{g(\mathbf{J})}{J_0} \bigg]^{(\alpha - \beta)} \bigg(1 + \chi \tanh \frac{J_{\phi}}{J_{\phi,0}} \bigg), \text{ where} \\ g(\mathbf{J}) &= g_r J_r + g_z J_z + (3 - g_r - g_z) |J_{\phi}|, \\ h(\mathbf{J}) &= h_r J_r + h_z J_z + (3 - h_r - h_z) |J_{\phi}|. \end{split}$$

- several realizations of O(10³) tracers with 3d (or more) phase-space coordinates (α, δ, ν_{los},...), drawn from an equilibrium model (DF+Φ) or from metal-poor accreted stars in Auriga galaxy #23.
- three choices of inclination angle (0° , 45° , 90°).
- explore the parameter space (3 for Φ + 9 for DF + inclination) using EMCEE [Foreman-Mackey+ 2013].

Results (idealised mocks)

circular velocity [km/s]

- inclination is well constrained and pretty accurate
- axis ratio is not well constrained and biased low
- mass profile is well recovered
- large variation between realizations

Results (Auriga mocks)

- run at fixed inclination
- axis ratio is poorly constrained and even more biased towards low q
- mass profile is biased low for face-on, high for edge-on orientations

- **Q**: why is it not possible to constrain the potential flattening q?
- A: not enough information: observational constraints are 3d $f(x, y, v_z)$, want to infer *both* the DF in the 3d action space $f(\mathbf{J})$ and $\Phi(R, z)$... good luck!

- **Q**: why is it not possible to constrain the potential flattening q?
- A: not enough information: observational constraints are 3d $f(x, y, v_z)$, want to infer *both* the DF in the 3d action space $f(\mathbf{J})$ and $\Phi(R, z)$... good luck!
- **Q:** is this a limitation of parametric DF-based models?
- A: unlikely; repeated the analysis with the much more flexible Schwarzschild orbit-superposition method, got a similar result wide range of allowed q values.

- **Q**: why is it not possible to constrain the potential flattening q?
- A: not enough information: observational constraints are 3d $f(x, y, v_z)$, want to infer *both* the DF in the 3d action space $f(\mathbf{J})$ and $\Phi(R, z)$... good luck!
- Q: is this a limitation of parametric DF-based models?
- A: unlikely; repeated the analysis with the much more flexible Schwarzschild orbit-superposition method, got a similar result wide range of allowed *q* values.

- **Q**: why the inferred values of q are biased low in DF models?
- A: most likely because of accumulation of slight inaccuracies in the Stäckel approximation for actions (which increase for more non-spherical models).

- **Q**: why is it not possible to constrain the potential flattening q?
- A: not enough information: observational constraints are 3d $f(x, y, v_z)$, want to infer *both* the DF in the 3d action space $f(\mathbf{J})$ and $\Phi(R, z)$... good luck!
- Q: is this a limitation of parametric DF-based models?
- A: unlikely; repeated the analysis with the much more flexible Schwarzschild orbit-superposition method, got a similar result wide range of allowed *q* values.

- **Q**: why the inferred values of q are biased low in DF models?
- A: most likely because of accumulation of slight inaccuracies in the Stäckel approximation for actions (which increase for more non-spherical models).
- **Q:** so, what to do?
- A: use spherical models and forget about trying to constrain the flattening. (this advice applies *only* to the case of 3d obs.data and when the potential is not dominated by observed stars).

Other examples of DF fitting

Two-population DF-based model of Scupitor dSph MW nuclear star cluster $(v_{los} \text{ only, spherical potential})$ v_{los} +PM, axisymmetric Φ 100 latitude [arcsec] 10 12 10 10 Σ_{obs} [*/kpc²] Jlos [km/s] -100 10^{2} MP model MR model -200 20 pc MP obs 10^{1} MR obs 10-1 8.0 0.2 0.4 1.4 200 100 0 -100 -200 R [kpc] R [kpc] Ionaitude [arcsec] 10^{2} 9.0 Z16 H20 Feldmeier+17 8.5 **R19** DM This work (R) Feldmeier+25 M_{\odot}] [[^{8.0} 7.5 (1^{7.0} P20 Stars free Mbh fixed Mbh M(<r) [10⁶ 10^1 V 6.5
M] 6.0
bol Walker+(2009) NSC mass Wolf+(2010) Amorisco+(2012) 5.0 total mass Campbell+(2017) (BH+NSC+NSD) 4.5Errani+(2018) 10^{0} 4.9 50 -1.25-1.00-0.75-0.50 -0.25 0.00 0.25 0.50 10⁰ 10^1 10^{2} 10^{-1} log (r [kpc]) [Arroyo-Polonio+ 25] r [pc]

200

PM