postdoc at the Institute of Astronomy, University of Cambridge, UK (2017–2022)

postdoc at Rudolf Peierls Centre for Theoretical Physics, University of Oxford, UK (2015–2017)

researcher at Tamm Theory Department of Lebedev Physical Institute (LPI), Moscow, Russia (2003–2010, 2013–2015)

postdoc at Rochester Institute of Technology, Rochester, NY, USA (2011–2012)

PhD in theoretical physics (2007) from LPI;

MSc from Moscow Institute of Physics and Technology in 2003.

email: eugvas@protonmail.com

Stellar dynamics around supermassive black holes, in particular:

Structure of non-spherical nuclear star clusters containing black holes and the rates of star consumption by SMBH

D.Merritt, E.Vasiliev, "Orbits Around Black Holes in Triaxial Nuclei" (ApJ 2011)

D.Merritt, E.Vasiliev, "Spin evolution of supermassive black holes and galactic nuclei" (Phys.Rev.D.2012).

E.Vasiliev, D.Merritt, "The loss cone problem in axisymmetric nuclei" (ApJ 2013)

E.Vasiliev, "Rates of capture of stars by supermassive black holes in non-spherical galactic nuclei" (Clas.Quant.Grav. 2014)

K.Lezhnin, E.Vasiliev, "Suppression of tidal disruption rates by anisotropic initial conditions" (ApJL 2015)

N.Stone, A.Generozov, E.Vasiliev, B.Metzger, "The delay time distribution of tidal disruption flares" (MNRAS 2018)

N.Stone, E.Vasiliev, M.Kesden, E.Rossi, H.Perets, P.Amaro-Seoane, "Rates of stellar tidal disruption" (Space Science Reviews 2020; chapter from the book "Tidal Disruption of Stars by Massive Black Holes")

Orbits around black holes in triaxial nuclei (poster at the Dynamics and evolution of disc galaxies conference, Moscow/Pushchino, June 2010)

Структура орбит в ядрах галактик и "кормление" сверхмассивных чёрных дыр (talk at Sternberg Astronomical Institute, April 2010)

Резонансная релаксация в окрестностях сверхмассивных чёрных дыр (a review talk at LPI, June 2010)

Relaxation and black hole feeding rates in non-spherical galactic nuclei (talk at the Dynamics of Galaxies conference, Sochi, May 2012)

Supermassive black holes in non-spherical galactic nuclei and enhanced rates of star capture events (talk at CITA and the Perimeter Institute, Waterloo, September 2012)

Сверхмассивные чёрные дыры и темп захвата звёзд в несферических ядрах галактик (talk at LPI, January 2013)

Black hole feeding rates in post-merger galaxies (talk at the "Stellar aggregates" conference, Bad Honnef, December 2016)

The Milky Way nuclear star cluster: theoretical perspective (review talk at the conference "Survival of dense star clusters in the Milky Way system", Heidelberg, November 2018)

Overview of the loss-cone theory for TDEs and EMRIs (talk at the workshop "TDE and EMRI dynamics", Como, September 2022)

LOSSCONE — a set of programs to compute the rates of star captures by supermassive black holes.

Evolution of binary supermassive black holes

E.Vasiliev, F.Antonini, D.Merritt, "The final-parsec problem in non-spherical galaxies revisited" (ApJ 2014)

E.Vasiliev, "Evolution of binary supermassive black holes and the final-parsec problem" (proceedings of the IAU symposium 312)

E.Vasiliev, F.Antonini, D.Merritt, "The final-parsec problem in the collisionless limit" (ApJ 2015)

Binary supermassive black holes and the final-parsec problem (talk at University of Waterloo, September 2012)

Evolution of binary supermassive black holes: the final-parsec problem (talk at LPI, December 2013)

Life and adventures of binary supermassive black holes (review talks at LPI, Marseille and Rome, March-May 2014)

Evolution of binary supermassive black holes and the final-parsec problem (talk at the IAU312 symposium "Black holes and star clusters in galaxies across cosmic time, Beijing, August 2014), and an updated version presented at Albert Einstein Institute (Potsdam), November 2014

Evolution of binary supermassive black holes: the final-parsec problem is solved (talk at LPI, April 2015)

Evolution of binary supermassive black holes and the mythical final-parsec problem (talk at MODEST-15s meeting in Kobe and at HEA-2015 conference in Moscow, December 2015)

Life and adventures of binary supermassive black holes (colloquium at UNAM, Mexico, June 2016; video recording)

Life and adventures of binary supermassive black holes (public outreach lecture at the Institute of Astronomy open evenings series, Cambridge, March 2021; video recording)

Dynamical modelling of galaxies:

Schwarzschild orbit-superposition modelling

E.Vasiliev, "A new code for orbit analysis and Schwarzschild modelling of triaxial stellar systems" (MNRAS 2013)

E.Vasiliev, M.Valluri, "Schwarzschild modeling of barred galaxies" (proceedings of the IAU symposium 353)

New variants of Schwarzschild modelling (poster at The great Andromeda galaxy conference, Princeton, June 2012)

Orbit analysis of N-body simulations and galactic models (talk at UChicago, October 2012)

Weighting supermassive black holes (a review talk at LPI, June 2013)

Orbit analysis and Schwarzschild modelling of triaxial stellar systems (talk at MPIA/Heidelberg, November 2013)

Schwarzschild orbit superposition method for disc galaxies (talk at the 2nd Gaia Challenge, Heidelberg, October 2014)

Nuclear dynamics of a nearby Seyfert galaxy NGC 4151 with NIRSpec integral-field spectroscopy (talk at the EWASS meeting, Liverpool, April 2018)

Schwarzschild modelling of barred galaxies (talk at the IAU symposium 353: Galactic dynamics in the era of large surveys, Shanghai, July 2019)

Barred galaxies: how to model them (talk at the Dynamics Workshop in Vienna, October 2019)

Schwarzschild modelling of barred galaxies and supermassive black holes (talk at the Dynamical Reconstruction of Galaxies workshop, Lorentz Center, Leiden, February 2020)

Deprojection and dynamical modelling of barred galaxies (poster at the EAS meeting, Valencia, June 2022)

Dynamical modelling of barred galaxies (talk at the Galactic bars meeting, Granada, July 2023)

Regular and chaotic dynamics of triaxial galaxies, evolution induced by chaotic orbits

E.Athanassoula, M.Romero-Gomez, E.Vasiliev, "Chaos in galaxies" (a short literature overview for IAU transactions, 2011)

Регулярность и хаос в звёздной динамике (a review talk at LPI, November 2008)

Chaotic mixing and the secular evolution of triaxial cuspy galaxy models built with Schwarzschild's method (poster at the Assembling the puzzle of Milky Way conference, Le Grand Bornand, France, April 2011)

Chaos and secular evolution of triaxial elliptical galaxies (talk at RIT, February 2011)

The role of chaos in secular evolution of galaxies (talk at Institut Henri Poincare, November 2013)

Action/angle modelling

Action-based modelling (talk at the 3rd Gaia Challenge, Barcelona, September 2015)

Action-based self-consistent models (talk at the University of Surrey, May 2016), and a shorter version presented at the workshop "Secular evolution of self-gravitating systems" (Paris, May 2016)

AGAMA: Action-based galaxy modelling architecture (talk at the 4th Gaia Challenge, Stockholm, October 2016)

Self-consistent models of our Galaxy in the Gaia era (talk at the University of Barcelona, October 2017), and an updated version of the talk (Strasbourg, March 2018)

Defying the disequilibrium: the usefulness of steady-state self-consistent models for the Galaxy (talk at the KITP conference "In the Balance: Stasis and Disequilibrium in the Milky Way", Santa Barbara, April 2019; video recording)

Stellar-dynamical modelling with the Agama toolbox (talk at ARI Heidelberg, November 2022)

Agama — action-based galaxy modelling library.

Milky Way and the Local Group

E.Vasiliev, "Internal dynamics of the Large Magellanic Cloud from Gaia DR2" (MNRAS Letters, 2018)

E.Vasiliev, "Proper motions and dynamics of the Milky Way globular cluster system from Gaia DR2" (MNRAS 2019)

E.Vasiliev, "Using Gaia for studying Milky Way star clusters" (proceedings of the IAU symposium 351 / MODEST-19)

E.Vasiliev, V.Belokurov, "The last breath of the Sagittarius dSph" (MNRAS 2020)

E.Vasiliev, V.Belokurov, D.Erkal, "Tango for three: Sagittarius, LMC, and the Milky Way (MNRAS 2021)

E.Vasiliev, H.Baumgardt, "Gaia EDR3 view on Galactic globular clusters" (MNRAS 2021)

L.Correa Magnus, E.Vasiliev, "Measuring the Milky Way mass distribution in the presence of the LMC" (MNRAS 2022)

N.Rehemtulla, M.Valluri, E.Vasiliev, "Non-parametric spherical Jeans mass estimation with B-splines" (MNRAS 2022)

J.Binney, E.Vasiliev, "Self-consistent models of our Galaxy" (MNRAS 2023)

E.Vasiliev, "The effect of the LMC on the Milky Way system" (Galaxies 2023)

E.Vasiliev, "Dear Magellanic Clouds, welcome back!" (MNRAS, in press)

J.Binney, E.Vasiliev, "Chemodynamical models of our Galaxy" (submitted)

Internal dynamics of the Large Magellanic Cloud from Gaia DR2 (poster at the MODEST-18 meeting, Santorini, June 2018)

Using Gaia for studying Milky Way star clusters (review talk at the MODEST-18 meeting, Santorini, June 2018)

Using Gaia for studying Milky Way star clusters (a different talk describing the actual results, University of Surrey, November 2018), and a shorter version presented at the MODEST-19 meeting, Bologna, May 2019 and the High Energy Astrophysics conference, Moscow, December 2019)

The Universe after Gaia DR2 (review talk at the High Energy Astrophysics conference, Moscow, December 2018), and an updated/extended version of this talk (University of Zürich, October 2019)

Dynamical modelling of stellar systems in the Gaia era (seminar talks at Liverpool John Moores University and Jeremiah Horrocks Institute, January 2020)

The demise of Sagittarius (seminar at the Institute of Astronomy, Cambridge, June 2020)

Tango for three: Sagittarius, LMC, and the Milky Way (seminars at the University of Michigan, Georgia State University, ASC LPI, November 2020 — February 2021); a shorter (10 minutes) video recording of the talk is presented at the Streams 21 meeting (Flatiron Institute/online, New York, February 2021)

Gaia EDR3 view on Galactic globular clusters (talk at the MW-Gaia workshop, Heidelberg/online, February 2021; video recording), and an updated version (seminar at the Institut d'Astrophysique de Paris, June 2021)

Dynamics of Milky Way globular clusters and satellites in the Gaia era (seminar at the University of São Paulo, September 2021; video recording)

Dynamics of star clusters and streams (talk at the Star clusters: the Gaia revolution workshop (Barcelona/online, October 2021)

The unquiet neighbour: how the LMC bugs the Milky Way (seminar at the Institute of Astronomy, Cambridge, October 2021, and University of Michigan, June 2022), and an updated/extended version of the talk at the MW-Gaia workshop in Athens (September 2022), American Museum of Natural History (October 2022), and University of Queensland (December 2022)

Tango for three and ballet for thirty: the interaction of the Milky Way with its satellites (seminar at the Institute of Astrophysics of Canary Islands, May 2022, and Observatoire de Strasbourg, September 2022)

The role of the Large Magellanic Cloud in the dynamics of streams and satellite galaxies (poster at the EAS meeting, Valencia, June 2022)

Dynamics of the Milky Way: an observational and modelling perspective (talk at the Linking galactic and extragalactic workshop, Wollongong, Australia, November 2022)

Chemodynamical models of the Milky Way (talk at the MW-Gaia workshop (Barcelona, September 2023)

The Large Magellanic Cloud as a dynamical dark matter laboratory (talk at the News from the dark workshop, Brussels, September 2023)

The second coming of the LMC? (seminar at the Leibnitz Institute for Astrophysics, Potsdam, September 2023)

General topics

Dynamical modelling of galaxies (lecture at the DAGal summer school, Marseille, June 2014)

Lectures at the Summer School on Galactic Dynamics, Shanghai, June 2019:

Lectures at the 45th Heidelberg Physics Graduate days, October 2020:

Lecture 1: Theoretical foundations of stellar dynamics: potentials, orbits, actions

Lecture 3: Equilibrium models of stellar systems

Lecture 4: Equilibrium models in practical applications

Lectures 5-6: Streams, shells, galactic archeology

Lecture 7: Mixture models and classification; a tutorial/example on Gaussian mixture modelling and deconvolution as a Jupyter notebook and pdf

Lecture 8: Perturbations and disequilibrium

Modern stellar dynamics (4th year course at the University of Cambridge, Winter 2022):

Lecture 1: introduction, observational foundations

Lecture 2: density and projection

Lecture 3: gravitational potential

Lecture 4: motion of stars

Lecture 5: action—angle variables

Lecture 7: distribution function-based models

Lecture 9: stellar encounters and collisional evolution

Lecture 10: evolution of dense stellar systems

Lecture 11: streams, shells and galactic archeology

Lecture 12: perturbations and disequilibrium

Космический телескоп Gaia (материалы по астрономии для школьников старших классов, December 2019):

Galactic archeology with stellar streams (public outreach lecture at the Institute of Astronomy open evenings series, Cambridge, December 2021; video recording)

Simulations of self-gravitating systems (galaxies, nuclear star clusters)

E.Vasiliev, "A new Monte Carlo method for dynamical evolution of non-spherical stellar systems" (MNRAS 2015)

E.Vasiliev, "A new Fokker–Planck approach for relaxation-driven evolution of galactic nuclei" (ApJ 2017)

Q.Zhu, E.Vasiliev, Y.Li, Y.Jing, "Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs" (MNRAS 2018)

J.Sanders, E.Lilley, E.Vasiliev, N.W.Evans, D.Erkal, "Models of distorted and evolving dark matter haloes" (MNRAS 2020)

E.Vasiliev, V.Belokurov, N.W.Evans, "Radialization of satellite orbits in galaxy mergers" (ApJL 2022)

C.A.Dong-Paez, E.Vasiliev, N.W.Evans, "A 6-d view of stellar shells" (MNRAS 2022)

E.Davies, A.Dillamore, E.Vasiliev, V.Belokurov, "Accelerated phase mixing in the stellar halo due to a rotating bar" (MNRASL 2023)

Secular Monte-Carlo method (poster at Institut Henri Poincare, November 2013)

A new Monte-Carlo method for dynamical evolution of non-spherical stellar systems (talk at the MODEST-14 meeting, Bad Honnef, June 2014)

Monte-Carlo methods in stellar dynamics, in application to massive black holes in galactic nuclei (talk at LPI, September 2014)

Adventures of a stellar cusp in the Galactic center (talk at the MODEST-17 meeting, Prague, September 2017)

Beyond collisionless Boltzmann equation: when relaxation is important (talk at the Vlasov workshop, Marseille, November 2017)

Radialization of satellite orbits in galaxy mergers (talk at the SEGal seminar series, Paris, September 2021)

The Galactic strudel (seminar at the Institute of Astronomy, Cambridge, October 2022)

Raga — a software for Monte Carlo simulations of non-spherical stellar systems, possibly containing massive black holes.

PhaseFlow — a Fokker–Planck code for spherically-symmetric isotropic multicomponent stellar systems, possibly containing a massive black hole.

Introduction and tutorial for gravitational N-body simulations (for undergraduates, Spring 2013): Lecture notes and problems.

Numerical simulations of gravitational dynamics (lectures at the School of Modern Astrophysics, Moscow, June 2016): Lectures, Seminars.

Lecture 1: Astrophysical introduction to gravitational dynamics.

Basic concepts: mean-field regime, two-body relaxation, collective effects, secular evolution.

Physical regimes: collisional vs. collisionless.

Overview of gravitational N-body problem, computational challenges.

Astrophysical contexts: planetary systems, star clusters, galactic dynamics, cosmological structure formation.Lecture 2: Collisional systems — planetary systems and star clusters.

Direct-summation methods. Symplectic and Hermite integration methods. Choice of timestep.

Two-body regularization schemes and their extensions.

Secular evolution of near-Keplerian systems, orbit-averaged approach.

Long-term evolution of planetary systems and globular clusters.Lecture 3: Collisionless systems — galaxies and cosmology.

Force softening and its physical interpretation; resolution and convergence.

Tree-code and fast multipole methods.

Grid-based Poisson solvers (FFT and multigrid relaxation methods), adaptive mesh refinements schemes.

Basis-set expansion technique.

Cosmology: comoving coordinates, initial conditions, halo finders.Lecture 4: Unconventional approaches and miscellaneous other issues.

Computational issues: hardware acceleration, GPU, parallelization strategies.

Direct solution of collisionless Boltzmann equation, applications to dark matter dynamics in cosmology.

Fokker-Planck and Monte Carlo methods for collisional systems.

Hydrodynamics — main approaches: grid-based, SPH, moving-mesh.

Gastrophysics and sub-grid physics in cosmological context.Seminar 1: Overview of gravitational N-body simulation software.

Workflow of numerical simulations. Individual simulation codes and integrated frameworks: NEMO, Starlab, AMUSE.

Architecture of the AMUSE framework. Setting up and testing the simulation environment on laptops.

Creating and analyzing a simple N-body model.Seminar 2: Simulations of collisional systems.

First-hand experience with various integration schemes. Assessing the validity of simulations, error control.

Evolving a star cluster and the Solar system.Seminar 3. Simulations of collisionless systems.

Dynamical friction acting on a point-mass satellite orbiting in a galaxy.Seminar 4. Bridge coupling of individual integrators.

Star cluster orbiting in a galaxy. Tidal stripping and dissolution acting together with dynamical friction.

Dark matter halo structure and evolution

PhD thesis: «Dynamics of dark matter in galactic centers» (in Russian). Автореферат, диссертация

,The evolution of dark matter in central areas of galaxies is considered (Milky Way is taken as an example). The formation of a galaxy leads to the compression of dark matter halo due to baryonic infall. Traditional method of calculating the compression (Blumenthal method) is shown to overestimate the dark matter density, especially for more flat initial halo density profiles and for radially anisotropic particle velocities. Subsequent evolution is driven by scattering off of dark matter particles on bulge stars and their absorption by the supermassive black hole. It is described by diffusion equation in energy - angular momentum phase space. The diffusion coefficients are calculated, as well as the absoroption and evaporation rate of particles. It is shown that by now the density of dark matter inside central parsec is greatly diminished: approximately 10% of initial dark matter mass is captured by black hole, about a half is evaporated. The annihilation of particles may explain observed gamma-ray flux from Galactic center

Its results are mainly presented in the following papers:

E.Vasiliev, M.Zelnikov, "Dark matter dynamics in the galactic center" (Phys.Rev.D 2008)

E.Vasiliev, "Dark matter annihilation near a black hole: Plateau versus weak cusp" (Phys.Rev.D 2007)

E.Vasiliev, "A simple analytical model for dark matter halo structure and adiabatic contraction" (JETP 2006)

Dark matter dynamics in the Galactic center (poster at the Dynamics of Galaxies conference, Saint-Petersburg, August 2007)

Dark matter dynamics in the Galactic center (talk at the N-body school, Turku, August 2008)

Cosmology

Hubble tension (talk at the Lund Observatory, December 2022)

"Тёмная материя и тёмная энергия во Вселенной" (небольшая популярная статья), слайды из лекции (April 2008)

Introduction to cosmology (3rd year undergraduates, semestral class). Lecture presentations (in russian):